Arduino Mega Chess on TFT display

Chess processor with GUI dedicated for Arduino Mega. by Sergey Urusov

After some my Arduino project remains unclaimed touchscreen, so I decided to realize my chidhood dream to create a chess program. After a couple of months it wins me, but it is not big deal because i do not have any chess rating, just amateur.

This project uses Arduino Mega 2560 because of lack of operative memory on Uno, 2.8 inch touchscreen, passive buzzer, and about 2000 lines of code.

Arduino Mega Chess on TFT diplay – [Link]

Raspberry Pi Clock with Temperature

A Raspberry Pi clock with outside temperature display using OpenWeatherMap and inside temperature display using a MCP9808 sensor. By Jeremiah Mattison

This project is for a building a digital clock that includes temperature display. It uses OpenWeatherMap to retrieve outside temperature information and a MCP9808 sensor for inside temperature.

Raspberry Pi Clock with Temperature – [Link]

Omron’s New Super-Sensitive, Non-Contact MEMS Temp Sensor

There’s a new addition to the Omron thermal sensor family. The D6T-1A-02 is the latest in sensory innovation with super-sensitive, infra-red (IR), non-contact temperature sensing capabilities using MEMS technology.

The Omron D6T thermal sensor is ideal for building automation applications, measuring the temperature in a room, or detecting occupancy, even when people are stationary. Additionally, because the D6T is fully non-contact it offers a wider detection range, as well as ultra-sensitive heat sensors – an excellent alternative to PIR detectors and pyroelectric sensors.

Making full use of MEMS technology, the D6T includes:

  • The ability to measure surface temps anywhere between -40° to 80°C (-40°-176°F) with an accuracy of +/- 1.5°C, and resolution of 0.06°.
  • A state-of-the-art MEMS thermopile, a sensor ASIC (Application Specific Integrated Circuit), and a signal processing microprocessor in a 12.0mm x 11.6mm x 9.2mm package.
  • A narrow field of view at 26.52, which allows for accurate readings of a specific object within range.

[via]

Omron’s New Super-Sensitive, Non-Contact MEMS Temp Sensor – [Link]

Embedded oscilloscope family for advanced electronics

By Ally Winning @ eenewsembedded.com:

The R&S RTM3000 and R&S RTA4000 series oscilloscopes have been launched by Rohde & Schwarz to enable advanced power measurements and accurately analyse serial protocols.

The RTM3000 oscilloscopes have bandwidths of 100 MHz, 200 MHz, 350 MHz, 500 MHz and 1 GHz. The products also feature a 5 Gsample/s 10-bit ADC, and a 40 Msample (80 Msample interleaved) per channel acquisition memory with an optional 400 Msample segmented acquisition memory.

The RTA4000 oscilloscopes offer bandwidths of 200 MHz, 350 MHz, 500 MHz and 1 GHz. The oscilliscopes have the same 10-bit ADC, but have an enhanced memory of 100 Msample (200 Msample interleaved) per channel acquisition memory and included 1 Gsample (1,000 Msample) segmented acquisition memory. Both series have a 10.1″ capacitive touchscreen display.

Embedded oscilloscope family for advanced electronics – [Link]

DAC Shield For Arduino Nano using MCP4725

This project features an easy to use Digital to Analog converter (DAC) shield for Arduino Nano. The project is built using MC4725 12Bit DAC IC over I2C communication. The shield directly seats on Arduino Nano and also can be used as stand-alone DAC converter that can be connected to other micro-controller board with help of 5 pin header connector. Output is 0-5V. PCB jumper J1 provided to select the address in case of using multiple modules on the same I2C .

Shield also provided with high current driver circuit, which converters voltage to current and can be used to drive Laser diode or LED. Maximum possible load 500mA.

DAC Shield For Arduino Nano using MCP4725 – [Link]

SimScale is Teaching Electronics Engineers How to Test Designs with Cloud-based CFD

Munich, January 9, 2018 — SimScale is announcing a free webinar on 24th of January to teach electronics engineers how conjugate heat transfer simulation in the cloud can help better investigate the thermal response of electronic packaging.

According to the Electrical and Electronic Manufacturing Market Briefing 2017 report from The Business Research Company (TBRC), the global electrical and electronics manufacturing market is expected to reach $3 trillion by 2020.

In such an innovation-driven and competitive industry, engineers deal with increasingly stringent thermal requirements due to the rapid increase in high-power density electronics. Thermal integrity is one of the most important considerations for electronics packaging or enclosures that affect the product lifecycle. The thermal impact on the electronic packaging is a key factor in material selection, cooling and form-related decisions that eventually determine the weight, size, and cost of the final design. It is vital for designers to determine the heat signatures of their system. (more…)

Arduino Milliohm Meter

danielrp @ instructables.com writes:

This is an accurate milliohm meter with a maximum resolution of 0.1mOhm. The design is very simple, the whole assembly can be built in a couple of hours once all the parts are gathered. It is based on a precision current sink and a high-resolution ADC controlled by an Arduino Nano V3. It uses a Kelvin connection with the resistor under test to exclude the resistance of test leads from the measurements. It can be very useful for measuring small resistors and the resistance of PCB traces, motor coils, inductance coils, transformer coils, or calculate the length of wires.

Arduino Milliohm Meter – [Link]

Overclocking Raspberry Pi

How to overclock the Raspberry Pi device? Don’t matter if you are looking for the way to overclock the Raspberry Pi 3 or overclock the Raspberry Pi 2 – the algorithm stays the same.

The only thing should be taken into consideration is that the Raspberry Pi 3 has significantly improved processor performance compared to previous models. Through various techniques such as overclocking and overvoltage, we can get even more power out of the Raspberry Pi 3. While Raspberry Pi 2 device will always be a little bit behind on performance due to basic technical peculiarities.

Overclocking, basically, is the way to boost Raspberry Pi hardware performance by tuning up several device parameters. For that, additional hardware and special skills are required. Also, you’ll need to implement several tests to make sure of changes to take effect as well as keep your device from damage.

As you have already understood, the overclocking of your Raspberry Pi 3 exercises some risks. What are they and how to avoid them, read in this article on the link.

Arduino Real Time Clock with DS1302 and Nokia 5110 LCD Display

Hi guys, in one of our previous tutorials, we made a real time clock, using the DS3231 RTC Module and the 1602 LCD display module. For this tutorial, we will be building something similar using the DS1302 RTC module and the Nokia 5110 display module. Unlike the 1602 LCD module which was used in the previous tutorial, the Nokia 5110 LCD module has the ability of displaying customized graphics which will help us display our data with better UX.

Arduino Real Time Clock with DS1302 and Nokia 5110 LCD Display – [Link]

Sensirion presents CO2 and RH/T Sensor Module

At this year’s AHR Expo 2018 trade show in Chicago (January 22 – 24, 2018), Sensirion, the expert in environmental and flow sensor solutions, is introducing the SCD30 – a humidity, temperature and carbon dioxide concentration sensor.

CMOSens® Technology for IR detection enables highly accurate carbon dioxide measurement at a competitive price. Along with the NDIR measurement technology for CO2 detection, a best-in-class Sensirion humidity and temperature sensor is also integrated on the same sensor module. Ambient humidity and temperature can be outputted by Sensirion’s algorithm expertise through modeling and compensating of external heat sources without the requirement for any additional components. Thanks to the dual-channel principle for the measurement of carbon dioxide concentration, the sensor compensates for long-term drifts automatically by design. The very small module height allows easy integration into different applications.

Carbon dioxide is a key indicator of indoor air quality. Thanks to new energy standards and better insulation, houses have become increasingly energy efficient, but the air quality can deteriorate rapidly. Active ventilation is needed to maintain a comfortable and healthy indoor environment, and to improve the well-being and productivity of the inhabitants. Sensirion’s SCD30 offers accurate and stable CO2, temperature and humidity monitoring. This enables customers to develop new solutions that increase energy efficiency and simultaneously support well-being. With the new SCD30, Sensirion has expanded its portfolio to include environmental sensor for air quality measurement.

Visit Sensirion at AHR Expo 2018 (Booth 3858) and learn more about the SCD30, Sensirion’s new humidity, temperature and carbon dioxide sensor module.

Discover more about relevant environmental parameters and Sensirion’s other innovative environmental sensors at www.sensirion.com/environmental-sensing

By continuing to use the site, you agree to the use of cookies. more info

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close