Measuring seismic activity using ProtoCentral OpenPressure

Seismic activity or “Vibrations of the earth” is measured using ProtoCentral’s OpenPressure 24-bit DAQ System.

A geophone is a magnetic device used to measure the Earth’s normal vibrations (some abnormal during events such as earthquakes). These movements are also present when there is a small explosion (commonly used for mining and exploration purposes).

Measuring seismic activity using ProtoCentral OpenPressure – [Link]

iSwitchPi Adds an Intelligent Power Switch to Your Raspberry Pi

by Peter Boxler :

Native Raspberry Pi does not have an On/Off switch and there is no easy way to shutdown the Pi while keeping the filesystem intact. This Intelligent Power Switch allows just that: Power-On the Pi by pressing a pushbutton and also properly Power-Off the Pi with another press on the same button. The intelligence is provided by a program running in an AVR MCU ATtiny44. This C-program implements a Finite State Machine in the MCU. A small Python script is running in the Pi itself. Just one GPIO-Pin is used for two-way communication. In addition, a variable frequency square wave is available for externally interrupting the Pi.

iSwitchPi Adds an Intelligent Power Switch to Your Raspberry Pi – [Link]

Teardown and analysis of microwave (26.5GHz) electro-mechanical step attenuators

Teardown and analysis of microwave (26.5GHz) electro-mechanical step attenuators from The Signal Path:

In this short episode Shahriar takes a close look at a pair of Hewlett Packard microwave electro-mechanical step attenuators operating up to 26.5GHz. Mechanical attenuators offer excellent repeatability, low insertion loss and nearly limitless linearity. The teardown reveals that the construction of both modules is very similar on the microwave path. In fact, the lower-frequency model still uses the same attenuator components. The newer model employs electronic control circuity while the older generation attenuator uses purely mechanically controlled DC path. Both models use a solenoid style actuators for step attenuation control.

Teardown and analysis of microwave (26.5GHz) electro-mechanical step attenuators – [Link]

Explanation of the Components on a Raspberry Pi

In this video, Circuit Basics unbox a new Raspberry Pi B+ and show you the main components on the board. It’s a good primer to watch before you connect it to a monitor, keyboard, or router for the first time.

Explanation of the Components on a Raspberry Pi [Link]

How to Write and Run a C Program on the Raspberry Pi

In this tutorial, circuitbasics.com discuss what a C program is, what C programming is used for, and finally, how to write and run a C program on the Raspberry Pi.

The C programming language is one of the most widely used programming languages of all time. It is computationally faster and more powerful than Python. C is a middle level programming language because of its low level of abstraction to assembly language.

How to Write and Run a C Program on the Raspberry Pi – [Link]

Weather Station with a BME280 sensor and an LCD screen with Arduino Mega

In this Arduino Project video educ8s.tv is going to build a simple weather station using a BME280 sensor and an LCD shield.

Hello guys, I am Nick and welcome to educ8s.tv a channel that is all about DIY electronics projects with Arduino, Raspberry Pi, ESP8266 and other popular boards. Today we are going to take a first look at the new BME280 sensor, a new very interesting sensor. We are going to build a simple but very accurate weather station project. I have built a similar project 2 years ago, using different sensors. Now that we have a new sensor available which makes things easier, it’s time to update the project. As you can see, on the LCD display we can see the temperature, the humidity and the barometric pressure. The readings are updated every two seconds. This is a very easy project to build so it is ideal for beginners! Let’s build it!

Weather Station with a BME280 sensor and an LCD screen with Arduino Mega [Link]

How to Read Your First Autodesk EAGLE Schematic

Back to basics. Here is a tutorial on autodesk.com blog on how to read schematics:

The schematic forms the building block of every electrical circuit, and even if you aren’t designing one yourself, knowing how to read one is invaluable. And with some schematic reading knowledge in hand, you’ll be able to design, build and ultimately troubleshoot your way through your design logic before heading on to your PCB layout.

How to Read Your First Autodesk EAGLE Schematic – [Link]

How to Set Up and Program an LCD Display on an Arduino

circuitbasics.com has a tutorial on how to setup an LCD with Arduino.

In this tutorial, I’ll explain how to set up an LCD display on an Arduino, and show you all the functions available to program it (with examples). The display I’m using here is a 16×2 LCD display that I bought for under $10 on Amazon. LCDs are really useful in projects that output data, and they can make your project a lot more interesting and interactive.

How to Set Up and Program an LCD Display on an Arduino – [Link]

5V to 12V @1.2A regulated power supply using LM2587

This circuit is based on LM2587, a simple boost converter from Texas instruments. It produces a 12V regulated output for a input of 5V. It can also be used as a multiple output regulator, forward converter and as a flyback regulator. This regulator requires minimum number of external components, which makes it cost effective.

Features

  • Input(V): 4.5VDC to 5.5VDC
  • Output(V): 12V DC
  • Output load: 1.2A
  • PCB:38mm X 30mm

5V to 12V @1.2A regulated power supply using LM2587 – [Link]

Raspberry Pi Zero PiE-Ink Name Badge

Maker Josh King has introduced the PiE-Ink Name Badge.

Introducing the PiE-Ink Name Badge – a Raspberry Pi Zero Python Powered E-Ink Linux Name Badge (what a mouthful!). A full wearable linux computer system on your chest!

Raspberry Pi Zero PiE-Ink Name Badge – [Link]