World´s Smallest Wearable Made to Help Prevent Skin Cancer

Wearables are devices that incorporate and interact with different parts of our bodies and perform a specific task. The tasks can be to improve our health (count steps, heart rate etc.) or to make our life easier (GPS, smartwatches etc.). Technology industry has dominated the wearable market since its easier for a technology company to produce technologic devices, but other companies have joined the trend and now companies in the textile, fashion and medical industry started producing their own wearables with specific purposes. L’Oréal the world leader on makeup, cosmetics skin care etc. has now joined the race.

In a research project with Northwestern university, the world´s smallest wearable was created. Measuring less than an M&M in circumference and weighting less than a raindrop this device was designed to measure UV exposure of the user to reduce skin cancer by modulating their exposure to the sun. UV Sense has no battery, no moving parts, its waterproof, and it can be attached to any part of the body preferably a location with good sun exposure.

The device connects to an app that shows you the exposure you have had in a day or over a period. Also, the app can be configured to send notifications when users exceed daily safe sun limit.

According to the skin cancer foundation “Each year in the U.S over 5.4 million cases of nonmelanoma skin cancer are treated in more than 3 million people, and each year there are more new cases of skin cancer”, but with this device skin cancer could be prevented instead of treated. The researchers at Northwestern have received roughly 2 million grant from the National institutes of Health to deploy fingernail UV sensors.

The device is undetectable which will encourage people to use it, and as it requires no batteries, users do not need to worry about charging the device or forgetting to do so. This means that people can now be warned about sun exposure and will be able to take measures to prevent diseases with no effort at all. The same research team is also working on other devices that could help check other health aspects to increase awareness about different diseases and the daily activities that may cause them.

[Source]

OpenMV- Machine Vision for Beginners

MV is the ability of a computer to see using analog to digital conversion and digital signal processing. The key characteristics that make a machine vision module better are sensitivity and resolution. These systems allow machines to see a broader spectrum of wavelengths such as x-rays, infrared or UV light. Nowadays, it is mainly used for object recognition, signature identification, material inspection, medical image analysis etc. Machine vision modules tend to be expensive which make them difficult to access for makers and hobbyists. OpenMV is a python powered machine vision module that aims at making MV accessible to beginners.

OpenMV was created by Hackaday user i.abdalkader and he worked towards making it affordable, small, open source and user friendly. It is programmable in python 3, and includes image processing libraries to make it easier. It is Based on STM32F ARM Cortex-M Digital Signal Controllers (DSCs) running at 168-216MH, and has an ATWINC1500 FCC Certified Wi-Fi module which can transmit data at up to 48Mbp. The image sensor used was a OV965x and a OV2640. Additionally, it has 512 KB of RAM and consumes 120 mA.

The libraries included give the MV the ability to detect shapes, faces, QR and barcodes, and it also has ORB key points detector, template matching with normalized cross correlation and more. The OpenMV includes I/O headers to connect shields to extend it´s capabilities. The IDE includes many features for image processing and it is based on QT creator. OpenMV has a micro SD card socket which allows for recording data, and the device measures 45 mm in length, 36 mm in width, 30 mm in height and only weights 16 g.

Few prototypes are already on pre-order for beta testing for $65 dollars on this website, they will only be selling about 10-30 of them. It has already been funded in Kickstarter with a huge success in 2015. Some applications might include drone flying, thermal/night imaging, line detection etc.

For beginners, this device could be a game changer for learning about machine vision, and creating projects. The easy to use IDE helps the user understand and code, but at the same time its open for users to modify and create as they see appropriate. The Wi-Fi module expands the capabilities and possibilities for using it, and the fast USB computer communication makes the device easy to work with. For an advanced use it has a long way to go, which includes improvements in image detection and analysis. The complete version is still not on sale, and a date has not been announced, but the project keeps being improved to provide users with a completely functional device and IDE.

[Source]

eVscope – Reaching for the stars as never before

Humanity has always been trying to reach for the stars, this lead to huge scientific developments that got the man into the moon, rovers into mars and a lot more. NASA often unveils photographs of space objects with bright colors and high definition, but these photos are taken using millions of dollars in telescopes and image software. Most amateur telescopes give blurry, opaque images (if you get to see anything at all). As a result, astronomy amateurs are often disappointed because of their high expectations regarding what they would see in the telescope. The company Unistellar optics combined two different technics to create a telescope that could fulfill hobbyist expectations.

As only a very small amount of light from stellar objects reaches earth, it’s important to collect as much light as possible which can be done with a lens (or mirror with a large diameter), or by exposing a photographic film for a long period of time. Nowadays, astronomers don´t use photographic film anymore because electronic cameras can take hundreds of pictures and overlap them to make one bright picture. However, the equipment to do all this can be expensive (professional camera, good telescope, mirrors with huge diameters), and they can also be complicated because of the need for a very dark sky, certain weather etc.

The eVscope (enhanced vision) made by Unistellar optics has a built in high quality image sensor, and instead of lenses an eye piece with an OLED display is used. Additionally, it has a computer controlled mount and drive, all in modest dimensions. It costs about 1300 dollars and works by taking short exposures and staking them in real time to simulate a larger instrument.

This device has already been tried by many amateur astronomers, and university students with very positive results. Also, the eVscope has an autonomous field detection which makes it easy for learners to pinpoint specific places, and with the smartphone connection capabilities people can save and share their pictures, and unlike other telescopes it is portable and autonomous. Currently, Unistellar optics has a Kickstarter campaign for this product with more than 2000 backers. eVscope is 100 times more powerful than a classical telescope and could change the way people see the sky and learn about astronomy.

[source]

New Small Form Factor PCs from Asus- CES 2018

CES is one the largest gathering places for people in the technology industry for introducing their new products and understanding the new technology trends. Asus is one of the biggest hardware, and robotics companies to be attending. This company will be displaying their small form factor solutions: PB40, PN40 mini PCs, Chromebox 3, and thinker board S. The main goal of this products is to offer a small and versatile product without compromising quality and performance.

The first one, PB40 mini PC gives its users the possibility to have the power of a computer with a portable size. It can support up to an 8th generation Intel Pentium processors, it has 6 USB 3.1 type-C ports, and support for VGA, COM, HDMI, and display. It comes in two variants N5000 quad core with burst frequency up to 2,7 GHz or J5005 quad core with burst frequency up to 2,8 GHz. It is also offered without a fan for silent operation.

Asus PB40

Just as the PB40, the PN40 is powerful, and small (not as powerful as the PB40). It’s ideal for home and business usage weighting 1.54 lbs. and measuring 114 x 114 x 49 mm. Also, it has a wide range of connectivity options including USB 3.1 for fast data transmission.

Asus PN40

The third one, the Chromebox 3 is the new successor of Chromebox 2 (released in 2016). It can support up to an 8th generation intel core processor and a DDR4 2400 memory. This new version has graphics and power improvements. Memory will be available in 4, 16, 32 and 128 GB, and wireless connectivity is dual band 802.11 ac WIFI and Bluetooth. Additionally, an audio jack, card reader and USB 3.1 connector will be included.

Chromebox 3

The last one, Tinker Board S maintains the same size and component placement as it´s previous version, but offers greater durability, stability, and improved user experience. It has on board 16GB eMMC storage, a microSD slot, HDMI-CEC-ready (allows users to control tv and Tinker Board with the same remote control), on board power on pin, audio jack, and enhanced I2S pin.

Tinker Board S

The PB40, the PN40 and the Chromebox 3 are expected to be on the market in the second half of 2018 with a price yet to be announced. The Tinker Board will be launched on the first quarter of 2018 at a starting price of $79.99. Comparing to previous versions, connectivity issues have been improved, but the memory could be better. These devices offer a lot of power in a small size which is an advantage for consumers, industries, and makers.

A Temperature Logger to Protect Sea turtles

Low-cost/power/size temperature logger

Data loggers are small, battery-powered devices used to sense and store information in different situations. They include a microprocessor, data storage, one or several sensors and they can record information for a very long period. However, some data loggers do not include sensors, but have ports that allow a sensor to be connected. They are used indoors, outdoors, and underwater for recording precise information about the environment they are in. Some applications may include monitoring light or temperature in crops, filed conditions, water level, and indoor humidity etc. Additionally, the information on these loggers can be accessed remotely or via USB.

In Hackaday a man named Nikos started a project to protect sea turtles through  research which consisted of creating a small, cheap, and power efficient temperature logger. Temperature is one of the main factors in sea turtle egg incubation success, because of climate change increasing temperatures may affect this process, so researching and monitoring temperature changes in sea turtle nesting habitats is necessary to mitigate the impact of a changing climate.

The objective of the project is to develop a temperature logger that is accurate, stores records for at least 180 days, samples temperature every 10 minutes, can operate for 180 days with a coin cell battery, is waterproof, costs less that 5 euros and can easily transfer information via computer cable. For research a huge quantity of data is needed which is why many companies use many loggers with a lot of storing capability, but this may result in high costs.

The sensor chosen for the project is the MAX30205 which can achieve a 16-bit resolution at a low consumption and cost. The creator also considered the Silicon Labs’ Si7051 and Texas Instruments’ HDC1080, but the MAX30205 was chosen because it had more details in accuracy over its operating range (which is better for scientific research).

As the temperature sensor gives its reading in 2 bytes then for the 180 days with 10 minutes intervals of reading 414720 bits will be needed, so a 512 Kbit memory was chosen. Taking price into consideration the Adesto’s AT25DN512C that comes in TSSOP-8 package was chosen. An advantage is that this type of package is small enough for the objective and its also available for 4 Mbit versions, so extra memory can be used. Also, the mcu used was the ATMEGA328PB-MN.

The project has not been finished and some improvements have been made and others are planned to be made soon. If you want to follow this project and know how it develops you can found it on its Hackaday official website.

Angle Sensing with Circular Vertical Hall Technology

Angle sensing has always been challenging particularly in industrial and automotive environment because of the need for precise and accurate sensing at high speeds. Allegro Microsystems developed the A1330 an integrated circuit angle sensor that works based on magnetic Circular Vertical Hall (CVH) technology. Unlike other angle sensors Allegro’s A1330 does not require a concentrator or a complex packaging assembly which results in lower costs.

The A1330 SoC (system on chip) include a CHV front end, digital processing, and analog output driver, and an on-chip EEPROM technology that allows up to 100 read/write cycles. This allows customer to program and calibrate parameters easily. Additionally, it has adjustable internal averaging that allows respond time to be traded for resolution. On the other hand, with averaging not enabled A1330 provides fast analog response time.

All the characteristic mentioned above makes the sensor ideal for low rotational velocities with high precision. The fact that angle scaling can be programmed allows for easy detection of mechanical failures by selecting minimum and maximum angle values that when surpassed might mean a problem.

In automotive industry hall sensors are used for fuel level, brake and clutch pedal switches, electronic parking brakes and much more. The advantage that the A1330 offers is higher immunity to parasitic fields and it can support higher target magnetic field levels (since it measures phase not amplitude). Also, it offers better temperature drifts performance which is an advantage in automotive industry where temperatures can get high. Its operational voltage is 3 V and its magnetic sensing is parallel to surface of the package, it has a current regulator for two wire operation, and a reverse battery and overvoltage protection. The package is lead free and A1330 is available as either single- or dual die option in a 8 pin TSSOP standard packaging. All the complete specifications can be found in Allegro´s website.

It is a 360˚ sensor that has ground breaking CVH technology for accurate measuring. The CVH technology is unique to Allegro which is a competitive advantage in price and accuracy. It was mainly created for industrial purposes since its precision might be too much for personal purposes. Information about prices, distributors, and availability can be found on Allegro´s official website.

[Source]

Sino: bit – Changing Programming for Kids All Over the World

Creating projects with Arduino can be challenging for kids, this may cause children to lose interest in electronics and DIY projects. The most complicated part is usually the connections required to use a sensor, led matrix or other devices that can be connected to the Arduino (or other microcontrollers). Since all these devices are different and have different types of connections which need to be made in a certain way, electronic projects may get boring or too complicated for a kid to learn. If the objective is to teach a kid how to code without the extra complication of cables, then the Sino: bit is the perfect choice.

Sino: bit is a microcontroller designed for teaching computer education in China created by Naomi Wu a DIY enthusiast. It is based on Calliope mini and can be programmed with Arduino IDE. It includes a 12×12 LED matrix, accelerometer, magnetometer, Bluetooth, buttons, a micro USB for programming, temperature sensor and a JST 3v battery connector. The battery connector was included to run projects without the need to be connected to the computer at all times.

Usually, when learning how to program kids are taught “hello world” which is a simple code that displays the same message. The 12x 12 LED matrix has that size not only to allow kids to play with a huge number of LEDs, but also to allow kids from every nation to do and understand their hello world. This was a problem because Chinese, Japanese, Hindi and other languages contain characters that cannot be displayed in a small matrix.

It’s the first to obtain the OSHWA (open source hardware association) certification in China which is an association in charge of making the task of identifying and marketing open source hardware products clearer and more transparent.

With a simple installation procedure, codes such as blink can start to work, and children all over the world would be able to experience “hello world” in their own language which will bring opportunities and open doors for non-English speaking kids. With all the sensors and options that it offers projects can be as simple as playing with LEDs and as complex as communicating with an external app to send information about the sensors. With the use of Sino: bit not only programming will be more inclusive, but also more code focused because instead of spending a lot of time thinking about connections kids can test their projects faster and with less room for errors.

[Source]

XMOS VocalFusion- Background Noise Not a Problem Anymore

The XMOS VocalFusion XVF3500 voice processor, to be shown at CES. Source: XMOS

 

XMOS is one of the many companies that has ventured in voice recognition technology. They created the VocalFusion XVF3500 device, the first voice processor to have true stereo-AEC support in a far-field linear microphone array solution. Voice recognition is a relatively new technology for consumers which we came to know with Siri, google home, Alexa etc. However, this technology has been developed since 1950s with a very limited understanding of numbers. Nowadays, voice recognition software can answer all kind of questions, perform activities (such as calls, notes and web searches), and even answer to sarcastic questions. Experts predict that 50 % of all web searches will be made using voice by 2020.

Voice recognition is not only about not using keyboards, but also about security and usability. Thanks to software such as Siri people can now make phone calls in the car without even looking at their phone, play music and send messages. The biggest problem is accuracy specially when dealing with accents which the voice software may not be able to comprehend.

Speech recognition works by analyzing the sound, filtering what you say and digitalizing it into a form that the computer can read, and then analyzing it for meaning. It has become increasingly complex to program this kind of software because of language, dialects, accents, and phrasing. Also, background noise can easily throw off the interpretation of your speech.

At CES 2018, XMOS plans to display their new XVF3500 voice processor alongside the VocalFusion 4-Mic Dev Kit, which was the first far-field linear array solution to achieve Amazon AVS (Alexa voice service) qualification, delivering easy integration of Amazon Alexa into commercial and industrial electronics. The kit is based on the VocalFusion XVF3000 device which provides acoustic echo cancellation and advanced noise suppression. This will allow developers to build Alexa enabled products which will accelerate it’s deployment in new systems and new devices giving customers the ability to access Alexa from more places.

The development kit includes the XVF3000 voice processor, I2S serial audio and I2C serial control interfaces, cables, xTAG debug adapter and much more. It enables across the room voice interface solutions which are then processed by cloud based recognition software even in places with complex acoustics and noisy environments. This could help solve the background noise issues allowing a more accurate interpretation and an improved user experience.

[Source]

Easy LED Strip Lightning Made possible by ChromaTab

LED strips provide users with multi-color and flexible illumination which can be fit into tight spacing. Also, they are customizable, durable, and easy to install which is why LED strips have gained popularity in design and personal projects. However, installing them can result in a lot of wire, power transistors (to control the LEDs), a microcontroller, a voltage regulator, and a lot of soldering. When danjhamer, a user from Hackaday, faced this problem while doing a small project with his daughter he came up with ChromaTab.

ChromaTab is a small control board for WS2812B RGB LED strips that can be soldered directly into the end of the strip. The device has 14 digital pins, 6 analog pins, and Arduino compatibility which allows the users to update and upload new sketches using the Arduino IDE. The sketches are to be uploaded though a USB to serial converter and as the firmware is based on Adafruit Neopixel library, effects and animations can be easily created.

It has an input voltage of 5-7 v, a current of 90 mA, clock speed of 16 MHz, SRAM of 2 KB and flash memory of 32 KB. It’s based-on Arduino Pro mini and Atmega 328P microcontroller. It is 43 mm wide, 10 mm High and 4 mm deep this size makes it easy to fit in small places. The only soldering needed is the 3 castellated pads to solder directly into the LED strip making your project more simple, organized, and easier to program. The complete specifications can be found on its official Hackaday website.

The ChromaTab could be perfect for kids learning about electronics or designers who want to use LED strips but don´t know much about electronics. Its already on sale in this website for € 18,00. Soon there will be add-on boards on sale to provide extra functions such as USB to serial converter. The device is cheap and offers to facilitate an otherwise boring task, but some improvements could be made such as making it water resistant (for Waterproof LED strips) or making it adaptable to other LED strip references. ChromaTab opens the door to a lot of projects and possibilities which is why it needs to keep improving to adapt to user’s project needs.

Drones- A Blessing or a Curse?

The increasing popularity of unmanned aerial vehicles (drones) has created a lot of security issues and possible privacy threats. Drone manufacturers have made them easy to fly so that any person without any experience can buy one and fly it without reading the instruction manual first. This has made them attractive for consumers, but also for criminals. Most of them have a camera to allow the user to go to distances beyond their sight. As a result, drones are now being used by many companies to make deliveries such as Amazon, by people to take selfies, by explorers, by authorities etc. This increased amount of usage may pose security threats to privacy and commercial space.

For example, there is already reported cases of drones almost crashing into military aircrafts, or invading the helicopters flying area when trying to put out a forest fire, hacked drones, or drones being used to smuggle drugs. Additionally, there are a lot of reports involving drones constantly flying over private properties while recording. Drones are difficult to detect because of their size, so the company Aaronia produced a new drone detection system that tracks the high-frequency signal between these devices and it´s remote control.

The device consists of a IsoLOG 3D antenna, a Spectran V5 spectrum analyzer and a plug in for the RTSA software. It offers the user a long detection range, functionality in poor visibility, high resolution of signal detection, portability, drone identification etc.

This system provides detailed information of signal distribution, and can be combined with different devices to provide a bigger range of detection. It can be programmed to set off an alarm when some selected parameters are exceeded. The IsoLOG 3D has 16 sectors that provide full 360 RF spectrum overview including an image of the monitored area. It has W signal sensitivity and continuous data streaming with up to 4 TB per day.

Militaries could use this device to protect large areas, and even in the future to stop the drones from entering areas where they could interfere with life threatening situations or confidentiality sensitive scenarios. For now, only detection is possible, but it is a huge step toward fixing the security concern posed by drones. Some parts in the United States have already implemented laws to register all drones and to prohibit the users from flying them above certain heights and close to airports. These governmental measures can help the Aaronia device to easily identify the drones, and the device could help the authorities to stop people from breaking the law.

[source]