SPIDriver – A better SPI Adapter

This moment in Crowd Supply you can find SPIDriver an intuitive tool for using SPI devices. The campaign that has already collected over $1000 of its $2700 goal, was designed to launch into the market a device to make our lives easier. It can be used with any SPI device such as LCD panels, flash memory, sensor LEDs etc. but what does it does exactly? The SPI driver shows you the SPI bus in real time, which is useful for debugging, testing, and calibrating.

It works with Windows, Mac, and Linux, and it can be controlled via the command line, python 2 or 3, C and C++, or a GUI. It is easy to plug in and includes 3.3 and 5 v supply. The display shows you what it’s happening in real time and sustains SPI transfers at 500 kbps. Additionally, it measures only 61 mm x 49 mm x 6 mm. Also, it uses a FTDI USB serial chip to talk to the PC.

Some of the solutions used as an example in the Crowd Supply webpage are:

  • Driving, testing, and evaluating new displays. Using displays is often difficult and getting them to work can be hard, but this device makes it easy
  • Programming SPI flash. Reading and writing SPI flash in- circuit. For example, for Atmel´s flash, a short script is everything you need to read and write
  • Lightning up LED strips. SPIDriver makes using these devices fast and fun giving users the ability to rapidly test using its own power supply

Plus, the colors in the screen are the same colors as in the cables, so you can know exactly what you are seeing.

The PCB is being manufactured by JLCPCB in Shenzhen, and its assembled in Pescadero USA. The units are thoroughly tested and calibrated with 1% accuracy.

There are 28 days left on the campaign, and you can support it with $27, $57 or 69$ which will get you your own SPIDriver (and some other stuff depending on the amount you pledge). The company claims that they will start delivering rewards on August 24th.

This device was designed, so that you never have to ask yourself again “What’s it doing now?”, and its meant to be used by all kinds of people from total beginners to experts. The complete specifications can be found on this website which is also the place to back the project.

ESP32- Now With Long Range Wi-Fi

Nowadays, Wi-Fi is a word we hear often, and it is a technology that we use all the time. There are around 279 million Wi-Fi hotspots in the world, and in 2021 that number is expected to increase to 542 million hotspots. The wireless nature of this technology allows users to access a network from any convenient location. Wi-Fi chipsets are pieces of hardware designed for wireless communication and they are cheap, and readily available, but the range don’t match the expectations, and configuring its coverage is no easy task.

Support for the 802.11 LR mode in the ESP-IDF was added at the end of 2016. The 802.11 LR mode can achieve a 1 km line of sight range if both the station and the Soft-AP are connected to an ESP32 device.

ESP32 is a low cost, low power system on a chip (SoC) with Wi-Fi and Bluetooth capabilities. It was created for mobile devices, wearables electronics, and for Internet of Things applications. The devices have low power consumption. The EPS32 uses Tensilica Xtensa LX6 microprocessor and it was created by Espressif systems.

The mode was included quietly, so there has not been much talk about it, but some people noticed the inclusion, and have been testing the long-range mode in the field. Enabling the mode requires only a function call, making it easy to use. The long-range mode comes with a cost which is the data rate which is significantly reduced. In addition, a lot more can be done if the common router antenna is replaced by directional antenna.

This device has already been tested by some users for drones and long-distance applications, but there is no formal data about the device’s performance, problems, and even the applications are not clear enough. The recent increase in popularity could lead to conclusive data which could make the mode more reliable.

The applications for this includes remote drone video, telemetry (collecting data at remote or inaccessible points and transmitting it for monitoring), wardriving (finding Wi-Fi hotspots from a moving vehicle) etc. There are many possibilities, but we must give makers time to figure this new mode on their own, and to test its capabilities.

[Source]

Redefining Signal Processing with Air-T

Artificial intelligence (AI) is an area of computer science that works towards creating machines that could make decisions, react, and interact just like a human would. To be considered AI a computer must be capable of recognizing speech, learn, plan, and solve problems. To do all this a computer must have a way to perceive the world and even interact with it (move). This type of technology has been used for personal assistants such as Siri and Alexa, for customer prediction (Netflix and Pandora), for autonomous vehicles, gaming etc. However, one application that has not been exploited is for signal processing.

Deepwave Digital decided to be pioneers in using AI for signals. The company created the AIR-T (Artificial Intelligence Radio Transceiver) which is a high-power SBC that uses NVIDIA Jetson TX2 for signal processing and deep learning applications.

Nowadays we deal with an increasing number of signals, because of Wi-Fi and cellular communications, and the technology is still human dependent to select the correct frequencies. Because of this, the need for an AI to do the work for us has become increasingly high, and as it turns out the AI can do the work better than us.

The AIR-T board also includes Xilinx Artix 7 FPGA and an Analog Devices 9371 MIMO transceiver with two RX channels of 100 MHz and a couple of TX channels of 250 MHz for connectivity, the device includes Bluetooth, Wi-Fi, HDMI, GPIO/UART, USB 2.0 and 3.0 etc. It uses Ubuntu 16.04, and it can be programmed using Python or C++.

All these characteristics make the device adaptable to many applications which will allow users to create and shape different projects. This project gives users the ability to adapt to software defined radio. Deepwave said:

This versatile system can function as a highly parallel SDR, data recorder, or inference engine for deep learning algorithms. The embedded GPU allows for SDR applications to process bandwidths greater than 200 MHz in real-time.

The device is not yet on sale, and Deepwave is expected to launch a crowdfunding to commercialize the product in the future, so there is still no information about price or sellers.

The idea is to redefine how signal processing is done using machine learning.

[source]

A flexible Arduino Prototype

A lot of makers have started venturing into the wearable world in which everything is portable, invisible, light, flexible and functional. Many have found that using Arduino compromised two of those characteristics. Arduino is not flexible, and it is not invisible which is why it is hard to incorporate into this kind of projects.

NextFlex in Silicon Valley has created a prototype of a flexible Arduino, based on the Arduino mini. The prototype is printed on a polymer and then the standard components are bonded. This means that the device is not yet completely flexible since it includes some rigid components, but the company hopes that in the future components such as resistors and capacitors would be printable too.

The process for making the flexible Arduino involves automated screen printers and industrial inkjet printers for printing the circuit on a 1mm thick flexible plastic board. Then, the microcontroller silicon die is connected directly into the surface with high precision.

The conductive ink used is an advanced formulation of silver ink with bending and flexing capabilities, and with strong adhesion to the surface. The ink is not new in the market, but the company is working toward making more reliable and resilient materials.

This device could bring wearables to a whole new level of comfort and could also be used in a lot of situations such as when space is an important variable, or when weight could affect the correct functioning of the device. As a result, the device would not only be useful for makers, but also for students, product designers etc.

On June 26 of the current year, NextFlex will be taking about the project at the Sensors Expo & conference in San Jose, California.

Manufacturers think that prices in this kind of technology would drop rapidly, making it accessible for everyone to use on their projects. NextFlex wants to make this kind of technology the new mainstream for all kind of projects. Flexible microcontrollers could also be used in IoT and medical applications.

In conclusion, Arduino is already a beloved microcontroller because of its open source hardware and software, its ability to be easily programmed, and its low cost, but now it could also be known because of its practical presentation, and ability to be blended. This device is just a prototype and we should expect improvements in the future, but the future is looking bright for makers.

Pixy 2 – Computer Vision at a Whole New Level

Computer vision started as a way for computers to understand their surroundings, this requires making a computer with a high-level understanding of digital images or videos. A device that performs computer vision needs to acquire, process, and analyze images to extract data from the real world and turn it into numerical information that can be used for something. The main application for this technology has always been artificial intelligence since giving a computer the ability to understand its surroundings (and learn from them) it’s a huge step towards decision making which is a fundamental part of AI.

Makers have also started using this type of technology which lead Charmed Labs to create Pixy in 2013. Pixy is a small, easily programmable device used to recognize certain things in its sight. Pixy can be taught objects, and it can also recognize color codes. This year, Pixy 2 was announced, and it can do everything Pixy could plus some additional features.

Pixy 2 has a custom pan tilt mechanism, making it easy to look around. Also, the image processing is now at 60 frames per second. It includes new algorithms for line detection, so it can track lines, and it’s now capable of identifying intersections, and reading signals to make decisions. Signals are simple barcodes which can be printed out and can be easily programmed to a certain instruction to be performed at the sight of that specific barcode.

The device includes a cable to plug it directly into the Arduino, or it can be connected to Raspberry PI via USB cable. It can also communicate via SPI, I2C and UART giving the makers a wide range of options to work with. Finally, the new version has a LED light meant to be used in dark spaces.

A lot of projects for Pixy can be found on the internet, and with the new additions that Pixy 2 offers, there would soon be a lot of applications for this device too. Pixy 2 is smaller, faster, and smarter. As a result, makers will find creative ways to exploit these characteristics in their projects. Finally, Pixy can also be used with Lego Mindstorms (NXT and EV3).

The first Pixy was launched on Kickstarter, but Pixy 2 is not crowdfunding, and its already available to be bought on Amazon or on its official website.

PicoEVB, PCIe FPGA Design in a Compact and Affordable Device

FPGA (Field-programmable gate arrays) devices have gained popularity in the past few years, mainly because of their ability to “become” any digital circuit given that there are enough logic blocks. These devices have endless applications and are sometimes faster which is why they are also used for hardware acceleration. Joining the FPGA industry is the PicoEVB, a small, cheap, open source board designed for PCIe prototyping.

PicoEVB is designed around Xilinx Artix XC7A50T, and measures 22 x 30 x 3.8 mm (about the size of a quarter). Also, it´s schematics will be published making the device open software and hardware. The files will be uploaded on its GitHub repository (there are some sample projects too). It was made to fit in laptop´s M.2 slot, and it can be used as an integrated part of your computer. It does not need any cables since its powered by your computer, and it can be programmed using Xilings Vivado IDE.

Nowadays, PCIe dev boards could cost around $1000, but PicoEVB will cost $219 making it a great competitor in PCIe design. The product can be bought through PicoEVB website, Amazon, Crowd supply and Ebay.

The device has 3 LEDs, 4 digital channels, or 1 analog and 2 digital, or 2 analog channels. Additionally, PicoEVB supports Windows and Linux. The only problem that a user might find is not having an M.2 slot which can be solved with an adapter to mPCIe slot.

Everything needed to program and debug the FPGA is on board, and taking into consideration the low price, it is a great alternative for designing PCIe on a low budget without reducing functionality. It´s the most compact and affordable FPGA development kit currently in the market.

[source]

Surrounding Gate Transistors – Price + Size + Performance

Intel co-founder Gordon Moore predicted in 1965 that the number of transistors per silicon chip would double every two years. This came to be known as Moore´s Law which has been proven accurate for the last fifty years. Many scientists argue that the law is soon to be broken because of physical limitations. The end of Moore´s law would mean a stagnation in computer processing and power and could cause economic issues because changing the whole computer industry to adapt to a new technology would generate really high costs.

Unisantis electronics in association with the Belgian research institute Imec have proposed a solution that not only allows the size to get smaller, but also will have minimum effect in manufacturing process. The Surrounding Gate Transistor (SGT) has a vertical design (as opposed to commonly used transistors which have a horizontal design), this means 50% less occupied area while electron mobility could increase by 300%. Additionally, the vertical structure improves operating voltage, stability, and leakage current.

Nowadays, transistors used are about 10 nm, but smaller sizes come with problems such as quantum tunneling which allows the electrons to flow from one gate to the next. SGT´s surround the channel on all sides and that provides better control over the channel. The surrounding gate topology enables a single SRAM cell using just six 5 nm transistors.

Also, Unisantis has developed the process for STG production using the technology available nowadays. As a result, the implementation of this technology in the sector will not mean a huge impact on costs.

Other solutions have been proposed such as software improvements, and parallelization, but these are not long-term solutions since a physical barrier is soon to be reached. Other solutions are too expensive to implement, or the idea is still in early steps. Many industries are working toward solving this problem, but few viable solutions have been reached.

Technology industry demands constant improvement in processing and power efficiency, and Unisantis electronics solutions offers price and performance, this could make this technology the next “standard” for computer products and will allow Moore´s law to stay valid for some more time. Its important to clarify that if Moore´s Law stops being valid, we won´t be the first to feel the impact since latest transistor technology is mainly used in super computers, it will take a couple of years for us to feel the slowing in the improvement rate of everyday devices.

Arduino’s New Competitors in IoT Race

Arduino, a worldwide leader in microcontrollers and IoT has now added two new members to the family. IoT (internet of things) is a recent term used to describe common devices embedded with electronics, giving them new functionalities such as data gathering, wireless controlling etc. Arduino gave their users the ability to easily navigate through IoT world because of their user-friendly system and has launched different boards and shields throughout the years.

In May, Arduino unveiled the MKR WIFI 1010 and MKR NB 1500, two new wireless connectivity boards designed to compete in the internet of things development.

The first one is the descendant of MKR1000, but it now offers low power consumption, and comes equipped with an ESP32- based module manufactured by u-blox. This gives the board 2.4 GHz WIFI and Bluetooth connectivity.

The second one is designed to work over cellular/LTE networks and supports transmissions via AT&T, T – Mobile, Verizon etc. Additionally, it provides faster communication, and power saving because of faster wake up and connection times.

Both boards are compatible with Arduino Uno, MEGA and all MKR boards, and both operate at 3.3 v and have 22 digital I/Os and seven analog inputs. They will be available for sale in the Arduino store in June of this year.

MKR1010 is fully compatible with the Arduino cloud, and has open- source WIFI firmware with allows the user to easily edit, upgrade and fix security flaws. Also, it has two processors, one based on ARM core technology, and the other one based on dual- core Espressif IC. ECC508, a chip for crypto authentication is included for secure communication.

MKR1010 measures only 61.5 mm x 25 mm, and weights only 32 gr making it perfect for IoT projects where size might be a concern, or when the device is meant to go unnoticed. MKR NB 1500 is slightly smaller.

Internet of things has turned into a competition over fastest connections and accurate results. It has been used everywhere from architecture, to medicine and transportation.  Massimo Banzi the Arduino co-founder said,

The new boards bring new communication options to satisfy the needs of the most demanding use cases, giving users one of the widest range of options on the market of certified products

Arduino´s new MKR boards will provide users with new capabilities which will lead to more projects with better performance even in the most demanding areas of the market.

Unlimited Source of Energy- As good as it Sounds

In recent decades, humans realized that fossil fuels are a finite source of energy that not only pollutes the environment but is also difficult to extract (it can even be dangerous). Because of this, there has been a huge increase in the development of new ways to extract energy from other sources such as solar, wind, geothermal etc. Following this trend, researchers at King Abdullah University of Science and Technology have developed a diode that generates electricity using infrared energy.

Not all sources of energy have been exploited by humans, and infrared energy is one of them. This was mainly because of the small wavelength of these waves which made it hard to harvest energy. Unlike, solar power or wind, infrared energy can be harvested 24 hours a day because it does not depend on day and night or weather conditions, and unlike solar power it is not limited only to the visible spectrum.

The diode works by using a rectifier (semiconductor diode) to transform alternating signals received by special antennas into electric current. The diode will harvest infrared radiation and waste heat from industrial processes and does this by transitioning quadrillionth- of- a- second wave signals into useful electricity.

The project leader Atif Shamim said :

There is no commercial diode in the world that can operate at such high frequency

that’s why they decided to use quantum tunneling to solve the problem. They used a bowtie- shaped Nano-antenna holding the insulator film between two metallic arms to generate the fields needed for tunneling. One of the researchers mentioned that one of the biggest challenges was working in a nanoscale that require precise alignment for it to work.

These new methods might be still less efficient than fossil fuels, but with the development of the technology used they could improve and be just as efficient, or even more. Additionally, the energy provided by the device is clean and comes from a renewable source. Infrared radiation is emitted all around us at all times and its estimated to be millions of Gigawatts per second. The device has already been tested and it successfully harvested energy solely from radiation and not from thermal effects, and as the project leader said “This is just the beginning- a proof concept”.

[Source]

Bosch BMA400 – Did you thought accelerometers couldn’t get any better?

Accelerometers are used in almost all fields, and they have been growing in popularity in IoT and wearables. Nowadays, those devices require a of energy, and because of this, they need to be constantly charged or batteries need to be constantly changed which causes users to lose interest, or to be limited by this problem. Size might be a problem too because some MEMs (micromechanical systems) acceleration sensors are too big to be implemented in everyday portable objects. In June 2018, Bosch will unveil their BMA400, a sensor that extends battery life and has a huge range of capabilities in a small size.

BMA400 is capable of measuring tilt, orientation, tap/double tap, and step counting (with activity recognition) using a low- noise measurement of accelerations in three perpendicular axes. Additionally, the device only uses 10% of the energy current comparable devices use which makes it useful for applications where charging is impossible. For example, this device could be used for package tracking over long distances, saving power by putting itself on sleep mode until something happens (the package is mishandled) which could compromise the quality of the product inside the package.

Other applications include home automation (automatic air conditioning that considers status (open or closed) of windows and doors), security (burglar detection), and sports. The BMA400 includes an activity detection function that can differentiate between walking, running, and standing. All this could be applied into wearables, and because of its size it could be a game changer in hybrid smartwatches (traditional watch with added smarts in a discrete way).

BMA400 measure only 2 mm x 2 mm x 0.95 mm, and device data can be retrieved over longer intervals (FIFO buffer of 1kB). Other specifications include:

  • 12-bit digital resolution
  • Output data rate (ODR) of 12.5 Hz to 800 Hz
  • Supply voltage of 1.71 V up to 3.6 V

Complete list of specifications can be found in the official website.

This improvements in an already widely used technology could result in advances in thousands of different devices, and in the implementation of this sensor in devices where it couldn’t be fitted before. Improving battery means improving product usability which results in happy users who can now use their device for longer periods of time. Also, makers and hobbyists could now apply this technology to new devices using the increased battery life as an advantage.

 

[Source]