Home Blog  





31 Dec 2014

DI5391f1sm

by Benabadji Noureddine @ edn.com:

Embedded systems frequently use HD44780-type LCD displays as it is considered the most popular alphanumeric display controller. The interface comprises at least 14 pins: eight for data, three for control (EN, WR, RS), two for power supply (Vdd, Vss), and one for contrast (Vre). Configured in 8-bit mode, it requires at least 10 I/O lines (D0..D7, EN, RS). Configured in 4-bit mode, it requires at least six I/O lines (D4..D7, EN, RS). This last case seems usable when using an 8-pin PICmicro. However, 8-pin PICmicros have one pin as an input-only pin.

One wire brings power & data to LCD module – [Link]

26 Dec 2014

obr1647_1

New 3,2“ and 3,5“ displays from company 4D Systems intended for Raspberry Pi are able to make a complete standalone system from this microcomputer.

Graphic output is always beneficial, enabling to use embedded microcomputer as a user interface (HMI) or at least to display various variables etc. There are many ways to reach it, but probably the most desirable solution would be to connect a display and nothing to solve.

New graphic modules 4DPi-32 and 4DPi-35 belong right to this group of ideal solutions, as they´re directly designed for Raspberry Pi (A,B, B+) – electrically and mechanically, while the I/O connector remains still available.

Simplicity of usage is empowered by a fact, that they don´t require (external) power supply, as they´re powered from the computer itself. Communication is done through a high speed 48 MHz SPI connection. Speed of a built-in processor enables displaying of pictures and videos with up 25 fps speed (even more if images can be compressed). Resistive touch panel enables operation of the whole system without a mouse.

As for the size, there´s only a small difference between 4DPi-32 a 4DPi-35 modules – the biggest difference is in resolution 480 x 320 px (4DPI-35) vs. 320×240 px (4Dpi-32). Both displays display GUI (primary) output of the Raspberry Pi – the same as if we had a monitor connected.

These novelties are already our stable stock item. Detailed information will provide you the 4DPi-32 and 4DPi-35 datasheets.

Add the 4-th dimension to your Raspberry Pi – [Link]

24 Dec 2014

An Arduino pulse sensor project from Bajdi:

I found a little heart rate sensor @ ICstation. It is a clone of the open hardware pulse sensor. The sensor is well documented, and it comes with Arduino and Processing example code.
To try it out I connected the sensor to an ATmega328 running at 3.3V and loaded the example Arduino code. I could now see my heart beat on the Arduino serial monitor :)
I then connected a 2.2″ TFT display to the Arduino and tried to figure out how to display the sensor output on it. Sounds simple but unfortunately it isn’t. Updating the full screen (320×240 pixels) is really slow. So I needed some smarter code to update only the pixels that needed to change. I happened to stumble on Matthew McMillans blog, he wrote some smart code to use a similar display as a speedometer. So I borrowed some of his code and mixed it with the example code of the pulse sensor. You can see the result in the above video.

[via]

Arduino heart rate sensor – [Link]

30 Nov 2014

Did you miss our webinar? Watch the VIDEO – record…

With the Bolymin graphic embedded module it´s possible to focus only on software development – hardware is done..All participants of the webinar could get Bolymin BE635 graphic embedded module and PICkit 3 In-Circuit Debugger with 25% discount.

More about BOLYMIN…


How to effectively handle human-machine interface in your applications? – [Link]


27 Nov 2014

FLNQVLCI2TR1IVC.MEDIUM

by df99 @ instructables.com:

This is an OLED clock I built using an Arduino Micro, a tiny OLED 128×64 display using the SSD1306 controller and I2C interface, and a precision DS3231-based real-time clock module with rechargeable battery backup. It features a menu system for setting the RTC (no serial port or USB required)

DS3231 OLED clock with 2-button menu setting and temperature display – [Link]

22 Nov 2014

obr1459_1

 

Minimal power consumption, slim design and a big amount of available versions with multi-color backlight – these are some benefits of the EADOG series displays.

EADOG series is familiar to many of you and probably it´s your favorite one from these main reasons:

  • displays are unusually flat (thin)
  • the have a very low power consumption of 100-s uA (without backlight)
  • wide possibilities of backlight, monochrome and also RGB
  • some types are well legible even without backlight
  • simple communication through 4/8 bit or SPI interface and newly even I2C

So far, types with up to 128x64px or 3×16 characters were available. The most recent additions to the EADOG family are bigger types with resolution of 160x104px (EADOGXL160), 240x64px (EADOGM240), 240x128px (EADOGXL240) and 4×20 characters (EADOGM204) and appropriate backlight modules EALED66x40, EALED94x40 and EALED94x67. Also these new types maintain a low profile – only 5.8 or 6.5mm with backlighting. A positivity is that even these new types are based on standard LCD controllers.

A guide at a choice of a suitable combination of display +backlight will provide you the application described in our article – Start with the EA DOG displays for free.

Detailed information will provide you the datasheets at particular types.

Industrial applications rely on the EA DOG displays – [Link]

18 Nov 2014

obr1623_uvod

With the Bolymin graphic embedded module it´s possible to focus only on software development – hardware is done.

Term: 2014.11.19 10:00 – 11:30 CET

How to effectively handle human-machine interface in your applications? – [Link]

13 Nov 2014

15580855039_fdd7a00860_z

by  Ioannis Kedros @ embeddedday.com:

I am very new to the multicopters hobby and a super newbie to the FPV (First Person Viewer) flying. I’ve never watch in real time someone flying through the screen but I’ve watched hundreds of videos online! The best-case scenario is to use some goggles (like the Fat Shark) in order to have a better experience. This will make you believe that you are actually inside the cockpit flying the machine. And that’s awesome!

But sometimes, even when everything looks simple this is not translated to cheap as well! A good FPV system, from the camera on the copter to the radio transmission system and the screen on the ground will cost you sometimes more than $200 (without even taking the price of the goggles into the equation). This is huge for my budget especially when the cost will be mirrored to a hobby of mine! So, I am going to try the most efficient solution!

FPV System – [Link]

12 Nov 2014

While TFTs have been the mainstay of displays for years, OLEDs are becoming more prevalent as their price drops due to the phenomenal increase in quality from TFT to OLED technology. We received this demo board from Newhaven that effectively illustrates side by side the differences between TFT and OLED technology, using a 1.69 inch 160 x 128 OLED display and a 1.8 inch 160 by 128 TFT display.

Tech Lab – Newhaven Full Color OLED Displays – [Link]

4 Nov 2014

rewritablelcd

by Colin Jeffrey @ gizmag.com:

Liquid Crystal Displays (LCDs) are a common and increasingly pervasive method of displaying information for everything from watches to giant TV screens. Though, like most other displays, LCDs require electrical energy to constantly display an image. Researchers from the Hong Kong University of Science and Technology, however, have produced an ultra-thin LCD screen prototype that is not only capable of displaying images without continuous power, but in 3D as well.

Energy-efficient 3D display maintains images without power – [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits