Home Blog  

27 Jan 2015


The HDC1008 is a digital humidity sensor with integrated temperature sensor that provides excellent measurement accuracy at very low power. The device measures humidity based on a novel capacitive sensor. The humidity and temperature sensors are factory calibrated. The innovative WLCSP (Wafer Level Chip Scale Package) simplifies board design with the use of an ultra-compact package. The sensing element of the HDC1008 is placed on the bottom part of the device, which makes the HDC1008 more robust against dirt, dust, and other environmental contaminants. The HDC1008 is functional within the full –40°C to +125°C

HDC1008 – Integrated Low Power Digital Humidity Sensor with Integrated Temperature Sensor - [Link]

21 Jan 2015

ON Semi AR1335

by Susan Nordyk @ edn.com:

Based on 1.1-µm pixel technology, the AR1335 CMOS image sensor from ON Semiconductor provides 18% better sensitivity than previous-generation devices, along with increased quantum efficiency and linear well capacity to enable near-digital still-camera quality and low-light imaging on smart-phone cameras. The sensor’s pixel and color filter processing increase sensitivity, allowing more light to be captured to improve image quality, especially in low light.

The AR1335 offers crisp 13-Mpixel resolution with high-quality zoom and sharp reproduction of scene details. Professional video quality is supported through 4K ultra-high definition and cinema formats at 30 fps and full HD 1080P at 60 fps. On-chip camera functions include windowing, mirroring, column and row skip modes, and snapshot mode. In addition, a 32° chief ray angle makes the sensor suitable for low z-height applications.

The AR1335 is now in mass production in die format. It has been designed into several smart phone models, with availability in leading phones expected by the second quarter of 2015.

Sensor enables low-light imaging for smart-phone cameras - [Link]

19 Jan 2015


Vishay Intertechnology is broadening its optoelectronics portfolio with the introduction of two new automotive-grade high-speed silicon PIN photodiodes in top-view, surface-mount packages measuring 5 mm by 4 mm by 0.9 mm. Offering a large sensitive area of 7.5 mm2, the Vishay Semiconductors VEMD5010X01 and VEMD5110X01 provide high radiant sensitivity with a reverse light current of 48 µA and a very low dark current of 2 nA for automotive, industrial, and medical applications.

The AEC-Q101-qualified devices are manufactured using Vishay’s new foil assisted mold (FAM) technology. The photodiodes’ leadframe, bond wire, and connection pads are molded in a black epoxy, while a free cavity above the radiant sensitive area allows light to enter the package for signal generation. This design enables a smaller overall package size with a lower height profile, while maintaining a large radiant sensitive area. In addition, thermal stress on the bond is reduced for increased robustness and reliability.

Vishay Intertechnology Automotive-Grade PIN Photodiodes Deliver 7.5 mm² Sensitive Area in Low-Profile Packages - [Link]

13 Jan 2015


by elektor.com:

MEMS manufacturer Kionix Inc recently announced the introduction of their thinnest full-functional tri-axis accelerometers: the KX112 (2.0 x 2.0 x 0.6 mm) and the KXCJB (3.0 x 3.0 x 0.45 mm). At 0.45 mm thick the KXCJB is half the thickness of its predecessor.

The size of the KX112 makes it suitable for integration into compact devices for wearable and health/medical applications. A wide range of functionality is built into the small outline with algorithms to detect motion for power management, free-fall detect for device protection or warranty monitoring, an orientation engine for portrait/landscape detection and tap/double-tap for user interface functionality. It also incorporates Kionix’s FlexSet performance optimizing technology for control of accelerometer power usage and noise value trade-off. It features a large 2048-byte FIFO/LIFO buffer which allows the rest of the system to remain in low power mode while the KX112 stores sensor measurements. The accelerometer can supply output data with 8 or 16-bit resolution and with a user selectable range of ± 2g, 4g or 8g.

Tri-axis Accelerometers get Thinner - [Link]

7 Jan 2015


Chas over at PNW/Electronics writes:

I came across a stash of iButton T-sense 1-wire sensors.. so I grabbed a couple and decided to check out 1-wire.
Maxim makes a 1-wire device called the DS18B20. It’s a 9-12 bit temperature sensor with the possibility of being powered by parasitic power from the data line. This cuts the signal path down to a single DQ line and a return. A company called iButtonLink produces a nice little wrapper around this device called a T-Sense. There are a couple pieces of software out there that will allow you to hook these up to monitoring systems, I don’t have any though. These devices come with a 64-bit address code and can be daisy-chained which makes having many of these devices monitored very nice.

iButtonLink T-Sense 1-wire sensor (Maxim DS18B20) + PIC 18F14K22 - [Link]

5 Jan 2015


“Raz” over embedded-lab.com has written a tutorial on how to interface BMP180 temperature and barometric pressure sensor with Arduino UNO board. The BMP180 is a new generation sensor coming on a LGA package and it’s able to measure pressure in the range of 300 to 1100hPa using low power and achieving low noise measurements. The interface is a standard I2C and sensor is fully factory calibrated. The voltage required to power the IC is 3.3V, so your Arduino must provide 3.3V. On this tutorial the data is displayed on a 1.44″ TFT display and “Raz” moved a step further calculating the altitude from the derived pressure. Code and libraries are supplied on the link below.

Interfacing BMP180 temperature and pressure sensor on Arduino UNO - [Link]

29 Dec 2014

A simplified explanation of how a capacitive MEMS accelerometer works.

How an accelerometer works! - [Link]

19 Dec 2014

2983 TA01b

by Michael Mayes @ edn.com:

Although temperature is a fundamental aspect of our lives, it is difficult to measure accurately. Before the era of modern electronics, Galileo invented a rudimentary thermometer capable of detecting temperature changes. Two hundred years later, Seebeck discovered the thermocouple, a device capable of generating a voltage as a function of temperature gradients in dissimilar metals. Today, thermocouples as well as temperature dependent resistance elements (RTDs and thermistors) and semiconductor elements (diodes) are commonly used to electrically measure temperature. While methods for extracting temperature from these elements are well known, accurately measuring temperatures to better than 0.5ºC or 0.1ºC accuracy is challenging (see Figure 1).

Temperature-to-Bits converter helps solve challenges in sensor measurement - [Link]

4 Dec 2014


praveen @ circuitstoday.com:

This article is about interfacing gyroscope to arduino. Gyroscope is a device used for measuring the angular velocity in the three axes. It works under the concepts of angular momentum and can be used to determine the orientation of an object. Typical applications of gyroscope includes missile guidance, flight control, smart phones, game station joy sticks etc. Mechanical gyroscopes, MEMS gyroscope, optic fiber gyroscope, ring laser gyroscope.

Interfacing gyroscope to arduino - [Link]

1 Dec 2014


RTC or real-time clock is a kind of computer clock for keeping track of the recent or most current time. Commonly, RTCs are present in almost all or any device, which are electronic in nature that needs to keep time accurate. Meanwhile, temperature sensors are devices that gather data concerning the temperature from a source and convert it to a form that can be understood either by an observer or another device. These sensors can be in various forms and are used for a wide variety of purposes, from simple home use to extremely accurate and precise scientific use. They play a very important role almost everywhere that they are applied; knowing the temperature helps people to pick their clothing before a walk outside just as it helps chemists to understand the data collected from a complex chemical reaction.

The circuit uses a PCA8565 CMOS real time clock and calendar optimized for low power consumption. A programmable clock output, interrupt output and voltage-low detector are also provided. All address and data are transferred serially via a two-line bidirectional I2C-bus with a maximum bus speed of 400kbit/s. The built-in word address register is incremented automatically after each written or read data byte. It also includes a MCP9801 digital temperature sensor capable of reading temperatures from -55°C to +125°C. Temperature data is measured from an integrated temperature sensor and converted to digital word with a user selectable 9 to 12 bit Sigma Delta Analog to Digital Converter. The MCP9801 notifies the host controller when the ambient temperature exceeds a user programmed set point. The ALERT output is programmable as either a simple comparator for thermostat operation or as a temperature event interrupts. Communication with the sensor is accomplished via a two-wire bus that is compatible with industry standard protocols. This permits reading the current temperature, programming the set point and hysteresis and configuring the device. Address selection inputs allow up to eight MCP9801 sensors to share the same two-wire bus for multizone monitoring. Small physical size, low installed cost and ease of use make the MCP9801 an ideal choice for implementing sophisticated temperature system management schemes in a variety of applications.

The board is basically a carrier for the two IC’s that make up the Real Time Clock (RTC), PCA8565 and the Digital Temperature Sensor, MCP9801. It conveniently combines the two for applications that require RTC and temperature sensing. A particularly useful feature of this RTC is that it can detect power down and record the time at that event. This is ideal for connecting to a microcontroller that does not have an RTC.

I2C Temperature Sensor & Real Time Clock - [Link]





Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits