Home Blog  





29 Jul 2014

PlasmonLaser

by elektor.com:

A new type of sensor being developed by a team of researchers at the University of California, Berkeley based on Plasmon laser technology is so sensitive it may be able to detect the presence of land mines in situ. In a paper published recently in the journal ‘Nature Nanotechnology’ a team of researchers led by Xiang Zhang, UC Berkeley professor of mechanical engineering, have outlined how they have been able to find a way to increase the sensitivity of a light-based plasmon sensor to detect minute concentrations of explosives. The new sensor consists of a layer of magnesium fluoride sandwiched between a semiconducting layer of cadmium sulfide, and a sheet of silver.

New Sensor could sniff out Land Mines - [Link]

28 Jul 2014

obr1562_1

Miniature calibrated humidity and temperature sensor Sensirion SHTC1 is usable even in space – limited applications.

Really miniature dimensions and a low price are main benefits of new calibrated sensors SHTC1 from production of company Sensirion. If you ever tried well known sensors series SHT2x, probably you´ve been surprised by their small dimensions (3,2×3,2x2mm). However the new sensor SHTC1 shifts dimensions a level further, or better said – lower. The result is a DFN package with dimensions of only 2x2x0.75mm, what in praxis represents a package, which you may not notice at a cursory look at a populated PCB. That´s why the SHTC1 is primarily intended for mobile applications and everywhere, where a spared space and a minimal power consumption are beneficial.

Taking a low price in mind, the guaranteed accuracy of SHTC1 chip is relatively excellent, roughly on a level of SHT21. Typical accuracy of ±3% in a range of 20-80% RH and ±0.3°C is probably fully sufficient for majority of applications. 1.8 V supply voltage and ultra low power consumption below 1uJ/measurement are ideal for battery powered devices. SHTC1 supports I2C fast mode (0-400 kHz). This small package practically can´t be soldered by hand, but it is relatively easily possible by means of a solder paste and a hot-air soldering station.

Also the SHTC1 is produced by a well proven CMOSens technology, which proves its reliability and a long-term stability in industry. Similarly, the SHTC1 also isn´t only a “sensor” but a ready-made calibrated solution containing 2x sensor, low-noise amplifier, A/D interface, data processing unit with calibration data in a ROM and a communication interface. Detailed information can be found in the Sensirion SHTC1 datasheet and the Sensirion Humidity flyer.  

We´ve got samples ready for you!
If you´re interested in trying this perspective sensor, take part in a contest below the article, or contact us on a well known address info@soselectronic.com.

SHTC1 we keep so far as an item upon order, but we´re able to supply it to you in a short leadtime and soon it will be a standard stock item.

SHTC1 – humidity and temperature from a pin head - [Link]

28 Jul 2014

NewImage233

Ray has a great reverse engineering project! Check out more on his blog rayshobby.net. [via]

At the Maker Faire this year I got lots of questions about soil moisture sensors, which I knew little about. So I started seriously researching the subject. I found a few different soil sensors, learned about their principles, and also learned about how to make my own. In this blog post, I will talk about a cheap wireless soil moisture sensor I found on Amazon.com for about $10, and how to use an Arduino or Raspberry Pi to decode the signal from the sensor, so you can use it directly in your own garden projects.

What is this?

A soil moisture sensor (or meter) measures the water content in soil. With it, you can easily tell when the soil needs more water or when it’s over-watered. The simplest soil sensor doesn’t even need battery. For example, this Rapitest Soil Meter, which I bought a few years ago, consists of simply a probe and a volt meter panel. The way it works is by using the Galvanic cell principle — essentially how a lemon battery or potato battery works. The probe is made of two electrodes of different metals. In the left picture below, the tip (dark silver color) is made of one type of metal (likely zinc), and the rest of the probe is made of another type of metal (likely copper, steel, or aluminum). When the probe is inserted into soil, it generates a small amount of voltage (typically a few hundred milli-volts to a couple of volts). The more water in the soil, the higher the generated voltage. This meter is pretty easy to use manually; but to automate the reading you need a microcontroller to read the value.

Reverse engineer a cheap wireless soil moisture sensor using Arduino or Raspberry Pi - [Link]

19 Jul 2014

FBDJ9T4HXRWOJ9C.MEDIUM

by JamecoElectronics @ instructables.com:

Build a DIY geiger counter that uses a PIN photodiode as a substitute for an expensive Geiger-Mueller tube. It detects alpha and beta radiation particles. The circuit is soldered onto a small protoboard and everything is placed in an aluminum enclosure. Copper tubing and a piece of aluminum foil is used to help filter out noise and RF interference.

Pocket Photodiode Geiger Counter - [Link]


17 Jul 2014

FRTKREHHXMKMU36.MEDIUM

by intensePancake @ instructables.com:

In recent years, portable sensor devices have gained a lot of popularity due to their ability to give you instant, accurate information about your local environment. Some of these devices include the Sensordrone, Smart Citizen, and the Storm Tag. These devices combine portability and accessibility in such a way that they’re easy to use and convenient to carry around. However, they can be expensive, as they’re required to pack quite a bit of advanced technology into a very small package.

This Instructable is for my Bluetooth Low Energy Go-Anywhere Sensor Pack (BLEGASP, if you will). It’s a device that I built from an Arduino and various environment sensors. Since environmental concerns differ from person to person, I wanted to create a device that maximizes sensor modularity.

Bluetooth LE Go-Anywhere Sensor Pack - [Link]

8 Jul 2014

doit-011-600x305

Ondrej Karas of DoItWireless writes:

This article describes temperature and humidity measurement with DHT11 sensor connected to TR module. Circuit diagram is very simple. You need only power supply for sensor and one wire for data line. This line has to be “pull-uped” – sensor has open collector output.

Temperature and humidity measurement with DHT11 - [Link]

3 Jul 2014

rcj_mCube_accelerometer_MEMS

The world’s smallest inertial sensors have already taken China by storm and are poised to take on the rest of us with their software iGyrpo which is affordable by any smartphone or tablet maker: R. Colin Johnson @NextGenLog

Worlds Smallest Acceleronmeter Priced for Any Budget - [Link]

27 Jun 2014

TMP75B

TMP75B 1.8-V Digital Temperature Sensor with Two-Wire Interface and Alert. by ti.com:

The TMP75B is an integrated digital temperature sensor with a 12-bit analog-to-digital converter (ADC) that can operate at a 1.8-V supply, and is pin and register compatible with the industry-standard LM75 and TMP75. This device is available in an SOIC-8 package and requires no external components to sense the temperature. The TMP75B is capable of reading temperatures with a resolution of 0.0625°C and is specified over a temperature range of –55°C to +125°C.

The TMP75B features SMBus and two-wire interface compatibility, and allows up to eight devices on the same bus with the SMBus overtemperature alert function. The programmable temperature limits and the ALERT pin allow the sensor to operate as a stand-alone thermostat, or an overtemperature alarm for power throttling or system shutdown.

TMP75B – 1.8V Capable Digital Temperature Sensor - [Link]

23 Jun 2014

WLI

sameer @ sgprojects.co.in writes:

Water level indicator plays a vital role in the world of water saving technology. It indicates five different level of water in a tank mostly used in housing water tank,cooler tank etc. The circuit is based on the microcontroller AT89S52 which is brain of the whole system. A CMOS IC4049 is used as a water sensor which provides input signals for the MCU. The output of microcontroller is connected to an LCD and a buzzer. LCD shows the water level in five steps. When the tank gets full of water,an alarm sounds.

Water Level Indicator using LCD - [Link]

16 Jun 2014

sonyinspired

by Nancy Owano @ phys.org:

Sony’s advance in image sensors appears quite natural: the company has developed a set of curved CMOS image sensors based on the curvature of the eye. A report on the sensors in IEEE Spectrum said that, “in a bit of biomimicry,” Sony engineers were able to achieve a set of curved CMOS image sensors using a “bending machine” of their own construction.

Sony inspired by biomimicry develops curved CMOS sensors - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits