Home Blog  





8 Jan 2013

obr1239_uvod

With the new AIR 40 wind turbine it is possible to gain 40 kWh monthly – easily and safely. 

Advantages / Features:

  1. high quality wind turbine with 12, 24 or 48V output voltage
  2. 40 kWh monthly at an average wind speed of 5.8 m/sec
  3. operation at 3.1-22 m/s wind speeds
  4. microprocessor based controller
  5. aluminium body
  6. composite blades optimized for a quiet operation
  7. 1.17m rotor diameter
  8. electronic overspeed protection
  9. brushless alternator (dynamo) with a long lifetime

Small wind turbines are an excellent electric energy source for all „off-grid“ applications with a low and middle power consumption like telecommunications, lighting, SCADA (telemetry) and other. In comparison to photovoltaic panels, they require only a very simple installation – to tighten to a shaft.

AIR 40 are top quality microprocessor controlled wind turbines with a precise mechanical construction. Thanks to a low weight and an integrated controller, they´re easy to install and provide an energy right after the installation.   Composite blades are optimized for a quiet operation, durability and a maximum power in a wide range of wind speeds. A big advantage of Air 40 is a relatively low start-up wind speed – already from – 3.1 m/s. „The heart” of  AIR 40 is a brushless alternator dynamo with permanent magnets and with a long lifetime.

Output power of AIR 40 depends from real on-site conditions, however in average it is able to provide 40 kWh monthly, at an average wind speed of 5,8 m/s (21km/h). At higher wind speeds it can be even substantially more. Wind turbines are capable of a standalone operation and they´re also a well-proven complement of PV panels, where they conveniently supplement a decreased power of PV panels, especially in winter season.
Detailed information will provide you the AIR 40 datasheet. In case of interest, please contact us at info@soselectronic.com.

Catch the wind into a net (or into a battery) - [Link]

4 Jan 2013

4673_app_1

The LT®3651-8.2/LT3651-8.4 are 2-cell, 4A Li-Ion/Polymer battery chargers that operate over a 9V to 32V input voltage range. An efficient monolithic average current mode synchronous switching regulator provides constant current, constant voltage charging with programmable maximum charge current. A charging cycle starts with battery insertion or when the battery voltage drops 2.5% below the float voltage. Charger termination is selectable as either charge current or internal safety timer timeout. Charge current termination occurs when the charge current falls to one-tenth the programmed maximum current (C/10). Timer based termination is typically set to three hours and is user programmable (charging continues below C/10 until timeout).

LT3651-8.2 and 8.4 – Monolithic 4A High Voltage 2-Cell Li-Ion Battery Charger – [Link]

19 Dec 2012

295450-solar_inverter_teardown_fig2t

This teardown article will delve into the architectural design and components of a solar inverter card starting from the Solar panel DC inputs and working our way through the DC to AC conversion process to the AC output that is sent out to the power grid. We will show what features need to be implemented into such a design to meet various safety and other performance standards as well as stringent power company demands upon the signal that is put onto their grid.

Teardown: The power inverter – from sunlight to power grid - [Link]

15 Dec 2012

article-2012november-managing-the-energy-and-fig1

Bryon Moyer writes:

The development of wireless sensing technology has made possible tasks that would have been unthinkable in years past. Sensors can be installed where it is impractical or impossible to run a communication wire; their ability to communicate wirelessly, as long as they are within range of a hub, means that it is possible to gather data in places or situations that were previously inaccessible.

The inability to run a communication wire to the sensor also means no power line as well. Sensors need power both to sense and to communicate, so that has typically meant using a primary battery. While you would presumably select a battery with as long a life as possible, the battery is still unlikely to outlast the life of the sensor, meaning that someone will have to go out and replace the battery at some point – which can be expensive.

Managing the Energy and Lifetimes of Thin-Film Batteries - [Link]


4 Dec 2012

circuitsdiy.com writes:

This is a simple li-ion charger without a dedicated li-ion charger IC. This circuit can be used to efficiently and intelligently charge any single cell Li-ion battery pack like mobile battery, digicam battery, etc.

Features:

  • Charging via mini-USB connector which is very common.
  • Charging status display by LED
  • Simple circuit by using opamp, resistor, and not by any complex dedicated IC or micro-controller.
  • Charges completely drained (0V) battery packs.
  • Max charging current 500mA (limited by USB supply), depending on battery.

Simple USB DIY Li-ion battery charger - [Link]

23 Nov 2012

Planning on powering that next über-low-power board of yours from a measly CR2032 coin cell?  Read this app note to understand exactly what the limitations of coin cells are: [via]

When designing a small wireless sensor node to be powered by the popular CR2032 coin cell, some sources claim there is a 15mA “limit” and that drawing more current is not possible or will “damage” the battery. This may give the impression that at 15mA everything works perfectly and battery capacity is great, while at 16mA nothing works. There is little public information available to explain why such a limit exists (if it indeed does exist), and little information explaining why 15mA would be a “magic number”.

Understanding Coin Cell Limitations - [Link]

9 Nov 2012

The TPS92510 by Texas Instruments is a 1.5-A constant current DC/DC buck converter with a combo of frequency synchronization, pulse-width modulation (PWM) dimming and thermal foldback firsts. Used with the WEBENCH LED Architect, users rapidly design a power management circuit to drive a string of up to 17 high-brightness LEDs at up to 97% power efficiency in automotive, industrial, and general lighting applications.

The TPS92510 operates with fixed frequency by using its internally generated clock or via synchronization to an external PWM clock source. Thermal foldback ensures light output remains even in an LED over-temperature condition, adding safety.  [via]

Features include:

  • 3.5-V to 60-V input voltage operating range supports a wide variety of DC LED lighting applications, including area and street lighting.
  • Fixed switching frequency range from 100 kHz to 2.5 MHz can be synchronized to optimize for efficiency or solution size.
  • LED thermal foldback with external negative temperature coefficient (NTC) protects LED array from over-temperature while maintaining reduced light output.
  • Dedicated PWM dimming input from 100 Hz to 1 kHz adjusts LED brightness without color shift or perceivable flicker.

Buck converter drives high-brightness LEDs - [Link]

30 Oct 2012

Carolyn Mathas writes:

The LT3763 by Linear Technology is a synchronous buck LED driver controller that delivers more than 300W of LED power. With an input voltage range of 6V to 60V, it targets such applications as automotive, industrial and architectural lighting. Output voltage from 0V to 55V enables it to driver LEDs in a single string. The driver features input and output current monitors and limiting and accurate input and output voltage regulation.

Buck LED driver delivers 300W of power - [Link]

7 Oct 2012

LT series LED drivers with 10-100W power represent a complete solution with wide possibilities of control. Exceptionally narrow and slim design, remained even at high-power versions, provides a high flexibility of use.

Power supplies for LED lighting (so called drivers) are available from many producers, in a various qualitative level. Why to decide just for the LT series from German company Friwo? Here are few reasons:

  • precise design, safe operation and a long lifetime
  • voltage and current regulation in one device
  • high efficiency and a possibility of dimming in a range of 0-100% directly via a CTRL pin
  • modules are available in 10-100W power, with a possibility of customization by laser directly at production also available a module for dimming – so called DIMMbox, further expanding possibilities of control (switch, 1-10V, DALI) and with a possibility of synchronization with up to 1000 slave units
  • very small cross section of modules (21x30mm, resp. 24x30mm at LT100) – applicable even in very tiny conditions

Wide control possibilities of LT series modules are perhaps the most interesting. Modules contain a galvanically isolated CTRL input, by which it is possible to switch on/ off the module without disconnecting from 230V mains. CTRL pin also serves for regulation of an output current. For this purpose, only one resistor (or a potentiometer) is necessary – connected between SEC+ and CTRL pins, with a value counted by a simple formula in the datasheet. The output current can also be controlled by an external voltage in the range of 0-1,8V connected to SEC- and CTRL, as well as by means of a PWM TTL (0/5V).

Further possibilities of control are provided by a standalone additional module DIMMbox. DIMMbox operates as an (almost) lossless PWM regulator with a MOSFET switched at f=600Hz. DIMM-BOX connected to any series LT driver enables to regulate an output current in a range of 10-100% or 0% (OFF) via a usual switch (switch-dimm“ mode), via a linear voltage 1-10V and also a DALI interface. DIMMbox tests after switching on, which of three methods of control is used and consequently accepts only signals from a given input – until switching off the module. DIMMboxes can be connected through SYNC inputs, ensuring the same level of dimming for all modules. Enclosed pictures will provide you the best idea about possibilities of connection.

Friwo drivers not only drive your LEDs but even control them - [Link]

6 Oct 2012

Steven Keeping writes:

Lithium-ion (Li-ion) batteries have become popular for portable electronics such as laptop computers and smart phones because they boast the highest energy density (capacity per unit volume) of any commercial battery technology. Other benefits include thousands of recharges and no occurrence of the “memory effect” that plagued early nickel cadmium (NiCd) rechargeable cells.

However, it has been a tough design challenge to get the technology to where it is today. Lithium is a highly reactive material that can, for example, burst into flames if it comes into contact with water. Engineers and scientists have worked hard to develop novel compounds that can leverage the advantages of lithium while producing inexpensive, reliable, and safe batteries.

A Designer’s Guide to Lithium Battery Charging - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits