Home Blog  





23 Dec 2012

20121206-imec

The Centre of Microsystems Technology (CMST), imec’s associated laboratory at Ghent University (Belgium), has developed an innovative spherical curved LCD display, which can be embedded in contact lenses. Unlike LED-based contact lens displays, which are limited to a few small pixels, the new LCD-based technology permits the use of the entire display surface. By adapting the patterning process of the conductive layer, this technology enables applications with a broad range of pixel number and sizes, such as a one pixel, fully covered contact lens acting as adaptable sunglasses, or a highly pixelated contact lens display. [via]

Breakthrough in Augmented Reality Contact Lens - [Link]

20 Dec 2012

Ric Kaner set out to find a new way to make graphene, the thinnest and strongest material on earth. What he found was a new way to power the world.

The Super Supercapacitor - [Link]

18 Dec 2012

transistor_1

Happy birthday, Transistor becomes 65 – [via]

The transistor, the ubiquitous building block of all electronic circuits, will be 65 years old on Sunday. The device is jointly credited to William Shockley (1910-1989), John Bardeen (1908-1991) and Walter Brattain (1902-1987), and it was Bardeen and Brattain who operated the first working point-contact transistor during an experiment conducted on 16 December 1947.

Yet this now ubiquitous device – these days more as an element in silicon chip design than as a discrete component – has a history that goes back to the mid-1920s.

Happy birthday, Transistor becomes 65 - [Link]

12 Dec 2012

Development in CERN never stops. Scientists from all over the world are working to improve every aspect of this giant experiment. That’s what happens on ALICE project in an effort to improve the current Inner Tracking System (ITS) and overcome difficulties encountered on the current detector technologies.

ITS Upgrade Project is responsible for the development of new detectors that will upgrade the ALICE project. Two new technologies are discussed to move the detectors on a new level. “Hybrid silicon pixel detectors” and ” monolithic silicon pixel detectors” are the basic concepts. There are already prototypes evaluated for the new silicon detectors.

Within the WG3 prototypes for both pixel technologies have been realized in the course of the past year. One of the main challenges is clearly the limitation in allowed material budget. This is necessary in order to improve the impact parameter resolution at low pT by about a factor of 3. A total of 0.3% X0 per layer is about a factor 3 less than used in the present ALICE silicon pixel detector, which is already the pixel detector with the lowest material budget of all LHC detectors. The thickness requirements for each component are therefore stringent. Silicon thicknesses of 50 µm in case of monolithic detectors or 100+50 µm in case of hybrid pixel detectors require special developments, which have been pursued within the WG3 community.

For latest NEWS follow ALICE Facebook page

ALICE Inner Tracking System (ITS) is upgrating to new detector technologies - [Link]


3 Dec 2012

Researchers at Rice University (USA) have developed a micron-scale spatial light modulator (SLM) similar to those currently used in sensing and imaging devices, but with the potential to run several orders of magnitude faster. Their ‘antenna on a chip’ operates in 3D ‘free space’ instead of the two-dimensional space of conventional semiconductor devices.

A device that looks like a tiny washboard may clean the clocks of current commercial products used to manipulate infrared light.

New research by the Rice University lab of Qianfan Xu has produced a micron-scale spatial light modulator (SLM) like those used in sensing and imaging devices, but with the potential to run orders of magnitude faster. Unlike other devices in two-dimensional semiconducting chips, the Rice chips work in three-dimensional “free space.”

In current optical computing devices, light is confined to two-dimensional circuitry and travels in waveguides from point to point. According to the researchers, 2D systems ignore the massive multiplexing capability of optical systems arising from the fact that multiple light beams can propagate in the same space without affecting each other. [via]

“Antenna on Chip” Manipulates Light at Warp Speed - [Link]

9 Nov 2012

A team at Rice University (USA) has devised a method for making nearly transparent films of conductive carbon nanotubes, a goal sought by researchers around the world. They found that dipping slides into a solution of pure nanotubes in chlorosulphonic acid (CSA) left them with an even coating that, after further processing, had none of the disadvantages seen with other methods. According to the researchers, the method is scalable to high-throughput industrial processes such as slot, slide and roll coating. The films, which could potentially be used for touchscreens, remained electrically stable after more than three months, according to the team.

Nearly Transparent Conductive Films - [Link]

31 Aug 2012

Data storage is becoming increasingly important as digital information doubles in volume roughly every two years. By the end of 2012 the volume will have grown 48% compared to 2011, the International Data Corporation (IDC) predicts.

Bioengineers have been jealously eyeballing nature’s information storage medium DNA for its efficiency and robustness.

Information stored in DNA can survive for a hundreds of thousand of years. Unlike data centers, DNA doesn’t need climate-control because it can withstand just about any environmental circumstance. As long as the data isn’t accessed there is no energy cost. And above all it has an extremely high storage density.

Now Harvard researchers report a major breakthrough. They have successfully encoded the contents of a book in DNA, copied it 70 billion times and fitted it on a space the size of a thumbnail. [via]

All data humanity creates in a year stored on 4 grams of DNA - [Link]

31 Jul 2012

Physicists at the University of Utah (USA) have invented a new ‘spintronic’ organic light-emitting diode (OLED) with the potential to be brighter, cheaper and more environmentally friendly than existing LEDs. They made a prototype of what is called a spin-polarized organic LED, or spin OLED, that emits orange light. In time the new technology could be extended to emit red and blue light, and possibly even white light. It may take a while for the new LEDs to go commercial, because they only operate at cold temperatures (-33 °C), so more work is needed to develop practical devices.

The new OLED is based on spintronic devices, which utilise the spins of electrons in a semiconductor material to store or gate data. The researchers discovered that with key advances in the organic semiconductor material, spin valve devices could also be made to emit light. The first advance is to use deuterium (‘heavy hydrogen’) instead of normal hydrogen in the organic layer, which increases efficiency. The second advance is to deposit an extremely thin layer of lithium fluoride on the cobalt electrode, which allows electrons to be injected on one side of the spin valve while holes are injected on the other side. This makes the spin valve bipolar, unlike older spin valves which only allow hole injection. [via]

New OLED Spins Brighter - [Link]

4 Jul 2012

Scientists at CERN announced early this morning that they are very confident they have found the Higgs boson. From New Scientist: [via]

There’s a 5-in-10 million chance that this is a fluke. That was enough for physicists to declare that the Higgs boson – the world’s most-wanted particle – has been discovered. Rapturous applause, whistles and cheers filled the auditorium at CERN, near Geneva, Switzerland.

Almost 50 years after its existence was first predicted, the breakthrough means that the standard model of particle physics, which explains all known particles and the forces that act upon them, is now complete.

A Higgs boson with a mass of around 125 to 126 gigaelectronvolts (GeV) was seen separately by the twin CMS and ATLAS detectors at the Large Hadron Collider, each with a confidence level of 5 sigma, or standard deviations, the heads of the experiments announced today at CERN.

Even by particle physicists’ strict standards, that’s statistically significant enough to count as a particle discovery.

“I think we have it,” said Rolf Heuer, director general of CERN, as he concluded a hotly-anticipated seminar, which began today at 9am local time.

Scientists Believe They Have Discovered the Higgs Boson! - [Link]

13 Jun 2012

[via]

Bill shows the world’s smallest atomic clock and then describes how the first one made in the 1950s worked. He describes in detail the use of cesium vapor to create a feedback or control loop to control a quartz oscillator. He highlights the importance of atomic team by describing briefly how a GPS receiver uses four satellites to find its position. You can learn more about atomic clocks and the GPS system in the EngineerGuy team’s new book Eight Amazing Engineering Stories http://www.engineerguy.com/elements

How an atomic clock works, and its use in the global positioning system (GPS) - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits