Home Blog  





15 Jun 2013

k-bigpic

Research on graphene-based sensors at the Nanyang Technological University (NTU) in Singapore has yielded a new type of image sensor able to detect light over a broad spectrum, from the visible to mid-infrared, with very high sensitivity. In addition to being 1,000 times more sensitive to light than current low-cost imaging sensors used in compact cameras, it also uses 10 times less energy because it operates at a lower voltage. [via]

Graphene Photosensor is 1000x More Sensitive - [Link]

24 May 2013

AntikytheraJessica MacNeil writes:

On May 17, 1902, a Greek archeologist noticed precision gear wheels embedded in an ancient artifact of corroded bronze and wood. The device would come to be known as the Antikythera mechanism, the oldest known complex scientific instrument.

Discovered in 1900 on the wreck of an ancient Roman merchant vessel near the island of Antikythera, the 2000-year-old device was designed to calculate astronomical positions, predict eclipses, and calculate the timing of the ancient Olympics. It is now regarded as the world’s first mechanical computer.

Gears are discovered on the Antikythera mechanism, May 17, 1902 - [Link]

5 May 2013

Here’s an amazing new DNA testing chip by Panasonic together with the Belgium-based research institution IMEC. It delivers DNA results within an hour:

This is the chip we’ve actually developed. As you can see, it’s less than half the size of a business card. It contains everything needed for testing DNA. Once a drop of blood is inserted, the chip completes the entire process, up to SNP detection.

New chip delivers DNA results within an hour - [Link]

26 Feb 2013

fully_depleted_transistors_fig1ab

Fully depleted silicon transistor are much promising for future developments. Xavier Cauchy writes:

To date, transistor scaling has continued in accordance with Moore’s Law down to 32 nm. Engineering challenges, however, are forcing chipmakers to compromise performance and power efficiency in order to reach smaller nodes – unless they switch to new technologies that help better solve these challenges. Today, the semiconductor industry is starting to deploy such new technologies, largely relying on “fully-depleted” transistors for continued scaling and performance gains.

Fully depleted silicon technology to underlie energy-efficient designs at 28 nm and beyond - [Link]


3 Feb 2013

Solar celx600l

The following is important because with flexible organic photovoltaic cells, we are nearing a new era of development for practical solar-based solutions can be implemented with clever usage of these devices. Efficiency needs to be higher, but technology is progressing in the right direction and a breakthrough is inevitable.

Heliatek announced a record breaking 12.0% cell efficiency for its organic solar cells. This world record, established in cooperation with the University of Ulm and TU Dresden, was measured by the accredited testing facility SGS. The measurement campaign at SGS also validated the superior low light and high temperature performances of organic photovoltaics (OPV) compared to traditional solar technologies.

New world record for organic solar technology with a cell efficiency of 12% - [Link]

4 Jan 2013

LEC-production-at-OSRAM-img_assist-350x233

With OLEDs approaching production maturity, Osram has announced that it is researching another technology that could change the world of lighting: light emitting foils produced in a printing process. The foils are based on light-emitting electrochemical cells made from organic materials, known as organic light-emitting electrochemical cells (OLECs). Although similar to OLEDs, they have a conductive and light-emitting layer containing a liquid material instead of a solid material. This active layer contains freely mobile ions in the liquid phase. When a voltage is applied to the active layer, the ions migrate to the edge. This allows charge carriers to be injected into the layer, where they recombine to emit light in the same way as a light-emitting diode. With suitable combinations of materials, any desired color of light can be obtained. [via]

Printed Light-Emitting Foils Could Challenge OLEDs - [Link]

23 Dec 2012

20121206-imec

The Centre of Microsystems Technology (CMST), imec’s associated laboratory at Ghent University (Belgium), has developed an innovative spherical curved LCD display, which can be embedded in contact lenses. Unlike LED-based contact lens displays, which are limited to a few small pixels, the new LCD-based technology permits the use of the entire display surface. By adapting the patterning process of the conductive layer, this technology enables applications with a broad range of pixel number and sizes, such as a one pixel, fully covered contact lens acting as adaptable sunglasses, or a highly pixelated contact lens display. [via]

Breakthrough in Augmented Reality Contact Lens - [Link]

20 Dec 2012

Ric Kaner set out to find a new way to make graphene, the thinnest and strongest material on earth. What he found was a new way to power the world.

The Super Supercapacitor - [Link]

18 Dec 2012

transistor_1

Happy birthday, Transistor becomes 65 – [via]

The transistor, the ubiquitous building block of all electronic circuits, will be 65 years old on Sunday. The device is jointly credited to William Shockley (1910-1989), John Bardeen (1908-1991) and Walter Brattain (1902-1987), and it was Bardeen and Brattain who operated the first working point-contact transistor during an experiment conducted on 16 December 1947.

Yet this now ubiquitous device – these days more as an element in silicon chip design than as a discrete component – has a history that goes back to the mid-1920s.

Happy birthday, Transistor becomes 65 - [Link]

12 Dec 2012

Development in CERN never stops. Scientists from all over the world are working to improve every aspect of this giant experiment. That’s what happens on ALICE project in an effort to improve the current Inner Tracking System (ITS) and overcome difficulties encountered on the current detector technologies.

ITS Upgrade Project is responsible for the development of new detectors that will upgrade the ALICE project. Two new technologies are discussed to move the detectors on a new level. “Hybrid silicon pixel detectors” and ” monolithic silicon pixel detectors” are the basic concepts. There are already prototypes evaluated for the new silicon detectors.

Within the WG3 prototypes for both pixel technologies have been realized in the course of the past year. One of the main challenges is clearly the limitation in allowed material budget. This is necessary in order to improve the impact parameter resolution at low pT by about a factor of 3. A total of 0.3% X0 per layer is about a factor 3 less than used in the present ALICE silicon pixel detector, which is already the pixel detector with the lowest material budget of all LHC detectors. The thickness requirements for each component are therefore stringent. Silicon thicknesses of 50 µm in case of monolithic detectors or 100+50 µm in case of hybrid pixel detectors require special developments, which have been pursued within the WG3 community.

For latest NEWS follow ALICE Facebook page

ALICE Inner Tracking System (ITS) is upgrating to new detector technologies - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits