Home Blog  





6 Sep 2013

gelspeaker2

Researchers at Harvard University have demonstrated a new type of loudspeaker transducer which works on a different principle to the conventional moving coil design. It is made up of a thin sheet of transparent rubber sandwiched between two layers of salt water gel. A modulated high voltage signal passed across the two outer gel layers exerts pressure on the rubber membrane, causing it to vibrate and produce sound. The prototype speaker has a frequency response from 20 to 20 kHz.

The effect is produced by the electrical charges carried by ions and not the movement of electrons so strictly speaking this is not an electronic device. The new transducer could be used as an adaptive lens in an optical system or as a window-mounted noise cancellation device. The electrolyte gel is biocompatible so there could also be applications as artificial skin or muscle. [via]

Ionic Gel Speaker - [Link]

28 Aug 2013

FlowBattery

MIT has designed an ultra-low cost “flow” battery that it claims will store 10-times as much energy as lithium-ion while consuming 10,000 times less power, making it a candidate to meet the Department of Energy’s target of less than $100 per kilowatt-hour for grid-scale deployment. [via]

MIT’s flow battery simplifies rechargeable technology by eliminating the ion-exchange membranes. The lower solid graphite electrode reduces liquid bromine to hydrobromic acid, while hydrogen is oxidized at the upper porous electrode.

Flow Batteries Go Mainstream - [Link]

4 Aug 2013

article-2013july-oleds-move-closer-to-fig1

Steven Keeping writes:

LEDs are a rapidly maturing technology that is making big inroads into the conventional lighting market. However, it is not the only new lighting technology in town. Organic LEDs (OLEDs) are now being considered as an option for some architectural lighting applications after gaining popularity as a display technology offering vibrant color without backlighting. OLEDs differ from conventional LEDs in that the electroluminescence is not derived from a semiconductor junction, but is generated from a film of organic compound. That makes OLEDs simple to manufacture into large, lightweight, and even flexible panels. However, despite some key advantages over traditional LEDs, the devices are not yet available as a commercial lighting option primarily due to low efficiency and high costs compared to solid-state light sources. This article describes the performance of today’s commercial-lighting OLEDs and compares it to established technologies, including LEDs.

OLEDs Move Closer to Mainstream Lighting - [Link]

20 Jul 2013

graphene-strain-gauge_cropped-66-0-0-0-0

According to researchers at the Swedish Royal Institute of Technology (KTH) in Stockholm, graphene can increase the sensitivity of micro-electromechanical system (MEMS) sensors by up to 100 times due to exteme thinness of graphene films compared to other piezoresistive materials.

Piezoresistive pressure sensors typically integrate silicon piezoresistors into sensor membranes so that strain can be read in terms of resistance. The MEMS version suspends the membrane over a cavity by etching out the underying silicon dioxide. In the KTH version, an extremely thin layer of graphene is suspended over a cavity etched into a silicon dioxide layer on a silicon substrate. The extreme thinness of the graphene membrane – less than a nanometer with a monolayer membrane – increases the sensitivity of the electromechanical effect. [via]

Graphene Beats Silicon in Strain Gauges - [Link]


19 Jul 2013

F1x600

by Steve Taranovich

The following is a white paper by Silicon Labs with an innovative new process and technology that I believe deserves some level of detail and explanation for informative and educational purposes for EDN readers. Learning about this technology will help all designers give birth to new ideas and architectures as well as help those other designers to effectively integrate this type of product into their systems,

CMEMS® technology is an innovative CMOS + MEMS manufacturing process developed by Silicon Labs, a leading supplier of timing solutions. The term CMEMS is a contraction of the acronyms CMOS and MEMS (microelectromechanical systems). CMEMS technology offers many benefits over traditional oscillator approaches, ranging from scalability, customer-specific programmability and 0-day samples, to long-term reliability and performance. This white paper describes CMEMS process technology, existing hybrid oscillator architectures and the Si501/2/3/4 (Si50x) CMEMS oscillator architecture.

CMEMS oscillator architecture - [Link]

13 Jul 2013

transistor

These recent breakthroughs in electrical component technology are likely to have a significant impact on the electronics industry – and on people’s everyday lives.

Your’e probably aware of the superstar conductor of the future, Graphene: “A wonder material that is the world’s thinnest, strongest and most conductive material with the potential to revolutionise diverse applications; from smartphones and ultrafast broadband to drug delivery and computer chips”.

New electronic components will change lives in 2014 - [Link]

21 Jun 2013

Flugrad

Battery capacity is doubling every ten years. According to this statement, we may have to wait another ten years to see a functional quadrocopter capable of carrying a human being. The drones of today are very popular and versatile, but the duration of their batteries is limited and cannot carry much weight.

Not willing to wait for decent batteries the three Czechoslovakian companies Duratec, Technodat and Evektor (no, not Elektor) have teamed up to design a flying bicycle that is weighing only 95 kg (without the cyclist or should we say pilot?). We do not understand very well why this has to be in the shape of a bike, because its maneuverability on the ground seems quite debatable.

The Flying Bicycle - [Link]

21 Jun 2013

fmcu

American Semiconductor has announced the FleX-MCU product family. The new FleX-MCU device is the world’s first physically flexible microcontroller fabricated using the manufacturer’s FleX silicon-on-polymer process. It is an 8-bit RISC device with 8 KB embedded RAM operating at up to 20 MHz, with a 1.2 V core and 2.5 V I/O. It features several serial interface peripherals, including UART, I²C and SPI.

FleX-MCU is the initial product of a family of physically flexible ICs. The FleX IC roadmap includes microcontrollers, analog-to-digital converters, RF wireless communication devices and non-volatile memory.  [via]

A Really Flexible Microcontroller - [Link]

21 Apr 2013

newspo02_Plessey01_08apr2013

Plessey has released samples of their new gallium nitride (GaN) on silicon LEDs. These entry level products, fabricated on 6-inch wafers, are the first LEDs manufactured using GaN on silicon technology to be commercially available anywhere in the world.

Manufactured using Plessy’s proprietary large diameter GaN on silicon process technology, the LEDs are fabricated on a 6-inch line at Plessy’s facility in Plymouth, England. According to Plessey, the combination of standard semiconductor manufacturing processing and the 6-inch fab line provides yields of greater than 95% and fast turnaround , creating significant cost advantage over sapphire and silicon carbide based solutions for LEDs of similar quality. [via]

First GaN on Silicon LEDs Now Available - [Link]

21 Mar 2013

ECG

Imec demonstrated a low-power (20µW), intra-cardiac signal processing chip for the detection of ventricular fibrillation at this week’s International Solid State Circuits Conference (ISSCC 2013) in San Francisco with Olympus. An important step toward next-generation Cardiac Resynchronization Therapy solutions, the new chip delivers innovative signal processing functionalities and consumes only 20µW when all channels are active, enabling the miniaturization of implantable devices. [via]

Robust and accurate heart rate monitoring of the right and left ventricles and the right atrium is essential for implantable devices used in cardiac resynchronization therapy, and accurate motion sensor and thoracic impedance measurements to analyze intrathoracic fluid are critical for improving clinical research and analysis of intracardiac rhythm. Extremely low power consumption is also necessary to reduce the size of cardiac implants and improve the patient’s quality of life.

Carry a Chip in your Heart - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits