Home Blog  

9 Oct 2014


by Ben Coxworth @ gizmag.com:

Tired of digging through the collection of credit, debit and loyalty cards in your wallet? Well, if you are, then you’re the sort of person who might like the Plastc Card. It’s a new electronic card-format device, that can store the information for up to 20 other cards on it at once. You just select the card that you want to access via the e-ink screen, then use Plastc as if it were that card.

Plastc – one card to rule them all? - [Link]

8 Oct 2014


by Nancy Owano @ phys.org:

Technology from a Taiwanese semiconductor foundry is to bring considerable benefits in performance and power efficiency to big.LITTLE implementations, in the name of FinFET. Hsinchu, Taiwan-based TSMC announced last month it had successfully produced the first fully functional ARM-based networking processor with FinFET technology and explained how TSMC’s 16FinFET process promises speed and power improvements as well as leakage reduction.

TSMC, ARM see impressive results with FinFET process - [Link]

6 Oct 2014


A group of engineers have developed the smallest organic laser [via] :

The 8-µm-long device, which looks like a suspended bridge riddled with holes, is carved into a silicon chip coated with an organic dye. Integrated into microprocessor chips, such tiny lasers could one day speed up computers by shuttling data using light rather than electrons. They also could be valuable for sensors and lab-on-a-chip devices.

Engineers Build Ultrasmall Organic Laser - [Link]

2 Oct 2014


by By Ben Coxworth @ gizmag.com:

It’s the big paradox of emergency-use flashlights … by the time you eventually need to use them, their batteries have died. Eton’s new Blackout Buddy H2O, however, will reportedly still work after sitting for up to 10 years. And to turn it on, you just add water.

This latest member of the Blackout Buddy line has a magnesium-oxide battery, which starts delivering power to the light’s three LEDs when exposed to H2O. To initially fire it up, you dip it into a small cup of water, or pour water into its battery compartment. After that, it will keep going continuously for up to 72 hours – if it starts to dim within that time, you simply add more water.

Blackout Buddy H2O runs on water to provide emergency lighting - [Link]

1 Oct 2014



IBM has not only perfected a method of growing wafer scale graphene as a potential material for the post-silicon era, but has found a way to use it today to dramatically cut the cost of GaN LEDs.

IBM Grows Wafer Scale Graphene – [Link]

24 Sep 2014


by Colin Jeffrey @ gizmag.com

Researchers working at the University of Missouri (MU) claim to have produced a prototype of a nuclear-powered, water-based battery that is said to be both longer-lasting and more efficient than current battery technologies and may eventually be used as a dependable power supply in vehicles, spacecraft, and other applications where longevity, reliability, and efficiency are paramount.

“Betavoltaics, a battery technology that generates power from radiation, has been studied as an energy source since the 1950s,” said associate professor Jae W. Kwon, of the College of Engineering at MU. “Controlled nuclear technologies are not inherently dangerous. We already have many commercial uses of nuclear technologies in our lives including fire detectors in bedrooms and emergency exit signs in buildings.”

Long-lasting, water-based nuclear battery developed - [Link]

22 Sep 2014


by elektor.com:

We all know lithium-ion batteries need careful monitoring to prevent over-charging and ensure cell temperature remains within limits. We all thought we knew the best way to replace the charge as well: trickle charge, take it nice and gentle to keep the cell temperature down and prolong cell life. Turns out we may have got that last one wrong! New findings published in the Nature Materials Journal by a team of researchers at Stanford University indicate that by tweaking the battery design it may be possible to get faster charge/discharge rates and also increase the number of charge cycles.

Better lithium-ion Charging - [Link]

16 Sep 2014


by elektor.com:

The image may be a bit grainy and (at the moment) just monochrome but that is only to be expected for what is the world’s first flexible display to incorporate graphene in its pixel electronics. The new display technology is a result of collaboration between the Cambridge Graphene Centre and Plastic Logic. Plastic Logic has already developed flexible display electronics but this new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, replacing the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits.

First Graphene-based Flexible Display - [Link]

21 Jul 2014


by elektor.com:

The Raspberry Pi foundation have announced what they call an ‘evolution’ of the Raspberry Pi single board computer. The team have retained the original processor and clock speed and look on this new model as the final revision of the original design rather than a ‘Raspberry Pi 2’. To sum up the new model B+ has:

More GPIO. The GPIO header has grown to 40 pins, while retaining the same pinout for the first 26 pins as the Model B.
More USB. The B+ has 4 USB 2.0 ports, compared to 2 on the Model B, and better hotplug and overcurrent behaviour.
Micro SD. The old friction-fit SD card socket has been replaced with a much nicer push-push micro SD version.
Lower power consumption. By replacing linear regulators with switching ones the power requirements are reduced by between 0.5W and 1W.
Better audio. The audio circuit incorporates a dedicated low-noise power supply.
Neater form factor. The USB connectors are now aligned with the board edge, and the composite video now has a 3.5mm jack. The corners are rounded with four squarely-placed mounting holes.

Fresh Raspberry Pi Hits the Streets - [Link]

19 Jul 2014


Rechargeable batteries save us a lot of money but take a lot of time. What if you could recharge a battery in seconds instead of hours?

Rechargeable batteries save us a lot of money these days but for the savings, we give up some of our time, waiting for them to recharge. What if though. What if there was a rechargeable battery that took seconds to recharge instead of hours? That is exactly what I’ve invented and I need your help to bring this to the masses and show the world that we no longer need to waste hours of or lives waiting for a battery to charge.

With the leaps and bounds being made today with capacitors, they’ve gone from being able to store a tiny potential of energy to now, being able to store enough energy to be considered a power source. These high Farad capacitors are known as super capacitors and aside from providing electricity for an extended period of time, they can also be charged very quickly. Recently, there’s been another development, combining the technology of super capacitors with lithium ion batteries. The usually downside to super capacitors from batteries is that they don’t provide electricity for nearly as long. However, with the advent of the lithium ion capacitor, that is quickly changing.

30 Second Charging, Rechargeable Battery - [Link]





Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits