Home Blog  





12 Apr 2014

FL2JC9LHTQN6B61.MEDIUMdeba168 @ instructables.com writes:

A solar charge controller regulates the voltage and current coming from your solar panels which is placed between a solar panel and a battery .It is used to maintain the proper charging voltage on the batteries. As the input voltage from the solar panel rises, the charge controller regulates the charge to the batteries preventing any over charging.

Arduino Solar Charge Controller (PWM) - [Link]

28 Mar 2014

Heliatek

The organic solar film producer Heliatek based in Dresden, Germany have announced an improved type of solar cell which gives a transparency of 40 % while achieving 7 % energy conversion efficiency. Although its efficiency is not as good as the company’s opaque organic cells (roughly 12 %) this new solar film can be discreetly integrated into building and vehicular glazing to provide an energy harvesting tinted transparent film. The film is also effective at low light levels and high temperatures where conventional cells lose out.

HeliaFilm uses small molecules (oligomers), developed and synthesized at Heliatek. Oligomers are deposited at low temperatures in a roll-to-roll vacuum process and by changing the spectral absorption properties of the molecules the film can provide different levels of transparency and a colored tint. According to Thibaud Le Séguillon, Heliatek CEO “The transparency of our products is at the core of our market approach. Our HeliaFilm™ is customized to meet our partners’ specific needs, we are a component supplier and this component is a film which can combine transparency and energy generation. This unique combination widens our market potential.”

Organic Solar Film adds Tint and Power - [Link]

5 Dec 2013

article-2013november-maximizing-output-solar-modules-fig3

by Publitek European Editors:

Monitoring is the key to unlocking the energy production of the solar cell. It is easy to lose efficiency through the use of circuit architectures that assume constant energy production when the solar environment is constantly changing.

The change in current-voltage properties as a solar module heats up or receives more light can be an important source of efficiency losses in solar arrays. If the inverter that generates grid-compatible electricity is not tuned to the output voltage and current conditions, it will waste more of the electricity than it should. In response, electronics companies have produced ICs that perform the maximum power-point tracking (MPPT) needed to optimize energy conversion as well as bypass electronics to prevent temporarily unproductive modules from disrupting the output of active cells.

Maximizing the Output from Solar Modules - [Link]

15 Nov 2013

NewSolar

Researchers Steve Dunn at Queen Mary University and James Durrant at Imperial College London have been experimenting with a new design of thin, flexible solar cell made from zinc oxide. Manufacturing costs of the new cells will be significantly lower than conventional silicon based technology. The only disadvantage is their poor efficiency; just 1.2 %, a fraction of that achievable with silicon.

The material also exhibits piezo-electric properties, nanoscale rods of the material generate electricity when they are subjected to mechanical stresses produced by sound wave pressure. Sound levels as low as 75dB, equivalent to that from an office printer, were shown to improve efficiency. Durrant said “The key for us was that certain frequencies increased the solar cell output, we tried our initial tests with various types of music including pop, rock and classical”. Rock and pop were found to be the most effective. Using a signal generator to produce sounds similar to ambient noise they saw a 50 % increase in efficiency, rising from 1.2 % without sound to 1.8 % with sound.

New Solar Cell Shows a Preference for AC/DC - [Link]


21 Oct 2013

Julian Ilett demonstrates his Arduino Solar Charge Controller. He has mounted all of his Arduino modules to a piece of wood to keep everything nice and neat. [via]

“High efficiency values (96% – 97%) are achievable when the buck converter is stepping down from 18v to 12v. With a 72-cell panel and the converter stepping 35v down to 12v, the efficiency drops to around 88%.”

Arduino Solar Charge Controller - [Link]

30 Sep 2013

soitec-44-7-efficiency-solar-cell-537x358

A team comprised of the Fraunhofer Institute for Solar Energy Systems, Soitec, CEA-Leti and the Helmholtz Center, Berlin has just unveiled the world’s most efficient solar cell! Boasting an efficiency of 44.7%, the cell breaks the record set by Sharp just three months ago by 0.3%. The four-junction photovoltaic cell is not only dramatically more efficient than the theoretical 33.7% efficiency limit of conventional silicon-based solar PV, but it puts the team well on the road to reaching their goal of 50% efficiency by 2015.

German-French Team Unveils World’s Most Efficient Solar Cell! - [Link]

29 Aug 2013
3D honeycomb-structure of 3D graphene increases its conductivity to rival precious metals.

3D honeycomb-structure of 3D graphene increases its conductivity to rival precious metals.

Graphene is by definition flat and planar, but researchers at Michigan Tech have discovered a manner of fabricating 3-D graphene–a honeycomb structure that can replace the expensive precious metals in solar cells and potentially other energy applications such as batteries and even superconductors. [via]

3D Graphene for Cheaper Solar Cells - [Link]

14 Jun 2013

MCPapp1

Here is an app note from Microchip describing the design of a solar power DC-DC converter.

The focus of this application note is to identify how to get the maximum power out of a solar panel to power a remote application.

[via]

App note: Solar power DC-DC converter - [Link]

16 May 2013

Super Capacitors have become more popular over the past 5 years and are beginning to replace batteries in some applications. Charging a super cap can be tricky especially if you want to avoid damaging it. Here is a basic circuit that will allow you to charge a super capacitor with a solar panel.

How to Charge a Super Capacitor  with a Solar Panel - [Link]

14 May 2013

Untitled-1

Battery-Charging Controllers for Energy Harvesters by Jon Gabay:

Whether your energy harvesting application uses large solar panels with high voltages and currents or, more often the case, must make do with minute amounts of power derived from various other ambient energy sources, one thing is almost certain: some type of energy storage is on board, whether in the form of a small rechargeable lithium ion battery, a supercapacitor, or solid-state energy storage technology. For the engineer this means that not only do we need to design circuits to harvest and convert ambient energy, but we also have to include an energy-harvesting interface (and protection circuitry) as well as a charge controller. This article looks at single chip energy harvesting devices that also provide some form of charge control. It discusses the different conditions under which energy can be extracted as well as what to expect when trying to squeeze power out of the ambient environment. Finally, the article will present some typical integrated solutions for small-sized low-power energy-harvesting designs.

Battery-Charging Controllers for Energy Harvesters - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits