Home Blog  





22 Dec 2014

FRSUU6DI3THEUNX.MEDIUM

by physicsenthusiast:

In this tutorial, you will learn how to build a device that lets you feel radiation in your vicinity on your fingertips, and, if tuned well, feel cosmic rays passing through your hands. You will build it starting only with Geiger Muller tubes, fairly standard electronics components, and RFDuinos. The basic steps are to create a high voltage supply in which to suspend your tubes, process pulses from your tubes and feed them into an RFduino, and then use RFduino’s GZL library to radio events to a glove with vibrating motors attached to the fingertips. (RFDuino also makes it very easy to read data into an iPhone app, if you feel like going further).

Networked Cosmic Ray Detector: Feel Radiation on your Fingertips - [Link]

20 Dec 2014

camera-0706-A

This camera module can perform image processing such as AWB (auto white balance), AE (automatic exposure) and AGC (automatic gain control), for the video signal coming from CMOS sensor. What’s more, in fusion of other advanced technology such as image enhancement processing under low illumination, and image noise intelligent forecast and suppress, this module would output high quality digital video signals by standard CCIR656 interface. OV7670 built-in JPEG decoder supported reatime encoding for collected image, and external controller can easily read the M – JPEG video streams, achieving the camera design of double stream. OV7670 supported motion detection and OSD display function of screen characters and pattern overlay, capable of self-defining detection area and sensitivity.

OV7670 Camera Module DIY Guide - [Link]

18 Dec 2014

2014-12-17_2108

Gary Servin has been working on a new project a method to flash an Arduino via WiFi using the ESP8266:

I’ve been working on a new robot called RoDI for a summer course at my Alma mater. RoDI is a low cost wireless robot to teach robotics and programming I started developing last year (reminder to self: I still need to post about it), but it wasn’t until a month ago that I started to work on it more often.
The first version used a HC-06 Bluetooth module to communicate with the computer. I wanted to to use WiFi, but the cost of the WiFi modules was a problem, since the idea was that the entire robot would cost less than 30 USD. Then, I read about the ESP8266 WiFi modules on Hackaday, and started working on a new version of RoDI, this time with WiFi :D. I wanted to be able to flash the atmega328 inside the robot via WiFi because the robot doesn’t have a USB to Serial converter.

[via]

Programming an Arduino via WiFi with the ESP8266 - [Link]

17 Dec 2014

mg_1131-600

Lukas of Soldernerd built a DIY Arduino-based inductance meter:

I’ve just finished a little Arduino project. It’s a shield for the Arduino Uno that lets you measure inductance. This is a functionality that I found missing in just about any digital multi meter. Yes, there are specialized LCR meters that let you measure inductance but they typically won’t measure voltages or currents. So I had to build my inductance meter myself.

[via]

Arduino-based inductance meter - [Link]


13 Dec 2014

DC-Motor-Control_top-view_plain

by elektor.com:

Infineon have announced two shields for the Arduino development environment. The RGB LED Lighting Shield (shown left) provides three independent output channels with a DC/DC LED driver stage to give flicker-free control of multicolor LEDs. It is fitted with an XMC1202 microcontroller using a Brightness Color Control Unit (BCCU) to help off-load time-critical events from the Arduino processor. The Shield can be expanded by adding an optional isolated DMX512 interface for stage lighting control and audio nodes or a 24 GHz radar sensor for motion detection.

Arduino Shields from Infineon - [Link]

13 Dec 2014

DS1307_RTC_module

John Boxall over at Tronixstuff has posted a detailed tutorial on how to on how to use DS1307 and DS3231 real-time clock modules with Arduino:

There are two main differences between the ICs on the real-time clock modules, which is the accuracy of the time-keeping. The DS1307 used in the first module works very well, however the external temperature can affect the frequency of the oscillator circuit which drives the DS1307’s internal counter.
This may sound like a problem, however will usually result with the clock being off by around five or so minutes per month. The DS3231 is much more accurate, as it has an internal oscillator which isn’t affected by external factors – and thus is accurate down to a few minutes per year at the most. If you have a DS1307 module- don’t feel bad, it’s still a great value board and will serve you well.

[via]

Using DS1307 and DS3231 real-time clock modules with Arduino - [Link]

11 Dec 2014

code-lock-using-arduino

by praveen @ circuitstoday.com:

We have published a digital code lock using arduino some weeks before. This one is a little different. The earlier version was based on a defined password, where the user can not change it. Moreover there was no LCD display interfaced with the project to output lock status. This project is a much improved version of the same digital code lock which comes with a user defined password and LCD display. The user will be prompted to set a password at installation. This password inputted at installation will continue to serve the lock until it is changed. The user can change the current password with a single key press. The program will check for current password and allows the user to change password only if the the current password is input correctly.

Digital Code Lock using Arduino with LCD Display - [Link]

11 Dec 2014

F9LPZFTI3GX8NDS.MEDIUM

by jazzycamel:

I work as a software developer for a biology lab where my day job consists of creating applications to deal with big data visualisation. Recently however one of my colleagues had the need to take regular temperature measurements form a range of jars of liquids over quite an extended period. The commercial available solutions to achieve this are expensive and surprisingly lacking in features. So, as a dedicated hacker and maker, I immediately stepped in an said we could make something better ourselves. So we did. And this is how.

Quick & Easy Temperature Loggers - [Link]

10 Dec 2014

The most popular RTC for the Arduino is the DS1307. However, it does have some drawbacks, the most notable of which is that its operating voltage is 5v, which means it cannot be used with 3.3v projects.  The Maxim DS1339 however, features a wide tolerance of voltages from 2.97V-5.5V with the typical voltage as 3.3v, a battery backup, two alarms, and a trickle charger. The breakout board here packages the DS1339 with the components and connections necessary to use with your Arduino projects easily.

MAX DS1339 RTC Real Time Clock for Arduino - [Link]

9 Dec 2014

photo-1024x768

Serial camera module that captures time-lapse and stop-motion videos plus images to uSD card. Use with any micro like mbed and Arduino.

ALCAM allows any embedded system with a serial interface (UART, SPI or I2C) to capture JPG/BMP images and also to record them right onto an SD card. Also, ALCAM gives you the ability to create time-lapse and stop-motion AVI videos and save them directly to the SD card. All done through a set of simple and well documented serial commands. ALCAM can also capture images and videos though a special pin, without the need to send any commands.

ALCAM-OEM – Serial camera module - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits