Home Blog  

6 Feb 2015


Photovoltaic cells output boosted with carbon. R. Colin Johnson @ eetimes.com:

PORTLAND, Ore. — Scientists have demonstrated a doubling of the number of electrons produced by carbon-based photovoltaic polymer potentially doubling the efficiency of any solar cell. The process called “singlet fission” produces “identical twin” electrons from a single photon, instead of the normal one, dramatically boosting the theoretical maximum output of solar cells. Instead of loosing energy to heat, an extra electron is produced by the process of applying a polymer solution to an existing solar cell.

“One of the challenges in improving the efficiency of solar cells is that a portion of the absorbed light energy is lost as heat,” lead scientist at Brookhaven National Labs, Matt Sfeir, told EE Times. “In singlet fission, one absorbed unit of light results in two units of electricity via a multiplication process rather than resulting in one unit of electricity and heat as would occur in a conventional cell.”

Print-On Polymer Multiplies Solar Output - [Link]

30 Jan 2015


by Stephen Evanczuk @ digikey.com:

Microinverters provide an effective solution to solar-energy harvesting by providing power conversion at the individual panel level. The emergence of highly integrated MCUs offers an attractive approach to microinverter design, providing an option that reduces the cost of complexity which limited widespread adoption of microinverters in the past. Today, designers can build highly efficient microinverter designs using available MCUs from semiconductor manufacturers including Freescale Semiconductor, Infineon Technologies, Microchip Technology, Spansion, and Texas Instruments, among others.

Solar-energy-harvesting systems have continued to evolve away from traditional centralized solutions (Figure 1). Unlike systems based on a single central inverter or even multiple string inverters, microinverters convert power from a single panel. In turn, the AC power generated by microinverters on each panel is combined on the output to the load.

Integrated MCUs Enable Cost-Effective Microinverters for Solar Energy Designs - [Link]

16 Jan 2015


by Hanne Degans @ phys.org:

Nano-electronics research center imec announced today that it has improved its large area n-type PERT (passivated emitter, rear totally diffused) crystalline silicon (Si) solar cell on 6″ commercially available n-type Cz-Si wafers, now reaching a top conversion efficiency of 22.02 percent (calibrated at ISE CalLab). This is the highest efficiency achieved for this type of 2-side-contacted solar cell on an industrial large area wafer size.

Compared to p-type silicon solar cells, n-type cells do not suffer from light induced degradation and feature a higher tolerance to common metal impurities. As a result, n-type silicon solar cells are considered as promising alternatives to p-type solar cells for next generation highly efficient solar cells.

Large area industrial crystalline silicon n-PERT solar cell with 22 percent efficiency - [Link]

23 Dec 2014

Colloidal quantum dots can be sprayed on nearly any surface to turn it into a solar cell according to an IBM backed laboratory in Candada and the University of Toronto: R. Colin Johnson @NetGenLog

Quantum Dots Enable Spray on Solar Cells - [Link]

3 Dec 2014


Fully Assembled Solar Cell Controller Board and Sun Tracker for Arduinos /Raspberry Pi / Phone Charging. Plus Open Source Drivers.

Ever wanted to build your own Solar Powered Raspberry Pi or Arduino system? That is what this Kickstarter is all about!! SunAir and SunAirPlus are 3rd Generation Solar Charging and Sun Tracking Boards designed by Dr. John C. Shovic at SwitchDoc Labs.

You can use this board to power your projects and add a servo or stepper motor to allow it to track the sun using photoresistors to generate even more power! It incorporates a number of outstanding features in a very compact, inexpensive single fully assembled and tested PC Board.

SunAir Solar Power Controller Board/Tracker/Phone Charger - [Link]

3 Oct 2014


by edn.com:

In a bid to bring affordable solar technology to the market by 2017, IBM Research and Airlight Energy (Switzerland) have partnered to produce a solar parabolic dish that can concentrate the sun’s radiation by 2,000 times and convert 80% of it into useful energy. The system is said to be able to generate 12 kW of electrical power and 20 kW of heat under sunny conditions, and will be capable of providing both power and hot water/air conditioning to several homes.

IBM ‘sunflower’ solar concentrator produces energy and hot water - [Link]

8 Sep 2014


by embedded-lab.com:

This Arduino Nano controlled solar battery charger can charge a standard lead acid 12V battery and runs with 90% efficiency under 70ᵒC (158ᵒF). The circuit can take up to 24V input from the solar panels. The maximum power point tracking is implemented in the circuit by measuring the output voltage and current from the solar panel to get the maximum possible power from it.

Solar battery charge controller - [Link]

28 Aug 2014


by embedded-lab.com:

This application note describes a DC-to-AC converter design, specifically targeted at converting highly variable energy from a solar panel into a form that can be directly connected to the power grid. This emphasizes on the control design and how PSoC 5LP is employed for a particular power topology.

Solar microinverter - [Link]

19 Jul 2014


Here’s a cool Solar scare mosquito project by Gallactronics. He writes:

So I built a device that generates air bubbles at regular intervals and effectively produces ripples up to a radius of 2 meters (sufficient for most urban water bodies). The device automatically switches on when it comes in contact with water an alarm alerts if the water body dries up or someone tries to remove the device from water. At less than $10, the device is cost effective and being solar powered, it is energy independent and maintenance-free.


Solar scare mosquito - [Link]

15 Jul 2014

kurtscottage @ youtube.com writes:

In this video I’m showing you how I built some solar panels from start to finish I tried to make it as detailed as possible. These panels cost me very little to build and are fun projects for everyone. This is just one way of doing this there are lot’s of others doing this and good videos out there. Presently I’m using my panels at a job site where there is no electricity available they are running my RV off the grid. These panels are not encapsulated but they work well and low cost not for on roof installation best to be close to ground for inspection.

Homemade Solar Panels Diy tutorial - [Link]





Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits