Home Blog  





23 Sep 2011

Engineers at the University of California, Berkeley, have shown that it is possible to reduce the minimum voltage necessary to store charge in a capacitor, an achievement that could reduce the power draw and heat generation of today’s electronics. Shown is a rendition of an experimental stack made with a layer of lead zirconate titanate, a ferroelectric material. UC Berkeley researchers showed that this configuration could amplify the charge in the layer of strontium titanate, an electrical insulator, for a given voltage, a phenomenon known as negative capacitance.

“Just like a Formula One car, the faster you run your computer, the hotter it gets. So the key to having a fast microprocessor is to make its building block, the transistor, more energy efficient,” said Asif Khan, UC Berkeley graduate student in electrical engineering and computer sciences. “Unfortunately, a transistor’s power supply voltage, analogous to a car’s fuel, has been stuck at 1 volt for about 10 years due to the fundamental physics of its operation. Transistors have not become as ‘fuel-efficient’ as they need to be to keep up with the market’s thirst for more computing speed, resulting in a cumulative and unsustainable increase in the power draw of microprocessors. We think we can change that.” [via]

Negative capacitance – one day soon - [Link]

Leave a Reply

You must be logged in to post a comment.



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits