Home Blog

6 Jun 2012

## Operational Amplifiers Acting As Capacitance Multipliers

The need for high capacitance can be fulfilled via the use of a Capacitance Multiplier. The operational amplifier circuit is used as a capacitance multiplier in such a way that multiple small physical capacitances are combined in the integrated circuit technology to yield a large overall capacitance. The aim is often to multiply the original capacitance value hundreds and thousands of times. For example, a capacitor of 10 pF capacitance could be upgraded by the use of capacitance multiplier to behave like a 100 nF capacitor.

Construction of Capacitance Multiplier Circuits:

The circuit construction of a capacitance multiplier is quite simple. Two operational amplifiers, two resistors and a capacitor are used. The second operational amplifier is an inverted amplifier. A voltage source connected to the first operational amplifier will make the amplifier operate as a voltage follower. The circuit will produce a capacitance via the load imposition created by the second amplifier acting as an inverted amplifier. The produced capacitance is isolated from the circuit with the help of voltage follower. In this way, no current flows into the input terminals of the operational amplifier – the input current will flow through the feedback capacitor of the capacitance multiplier circuit.

How Are Multiple Capacitances Produced Using An Operational Amplifier Circuit?

Critical to production of effective capacitance is the selection of good resistance values for the two resistors in the multiplier circuit. The effective capacitance produced will be the capacitance between the input terminal of the operational amplifier and the ground. This effective capacitance will be the multiple of the physical capacitance āCā of the operational amplifier circuit being used as a capacitance multiplier. There is an option to limit the size of this effective capacitance by the use of an inverted output voltage limitation technique. This is a practical approach to limit the size of the effective capacitance.

Relation between Size of Effective Capacitance and Input Voltage:

The capacitance multiplication and the maximum input voltage avoiding saturation state in the operational amplifier are inversely proportional to one other. Effectively, the larger the size of the effective capacitance, the smaller the input voltage into the input terminals of the operational amplifier. Using a similar technique, a resistance multiplier circuit can also be implemented by configuring an operational amplifier circuit. Furthermore, the same operational amplifier circuit can also be designed to simulate inductance.