Home Blog  





4 Jul 2014
Four carbon nanotubes transistor channels are all controlled by the same local back gate.

Four carbon nanotubes transistor channels are all controlled by the same local back gate.

IBM has given itself a deadline of 2020 to perfect the nanotube transistor, for which there are significant technological hurdles: R. Colin Johnson @NextGenLog

IBM Will Produce Nanotube Transistors by 2020 or Give Up - [Link]

4 Jul 2014

connected

by tinkering.graymalk.in:

The amplifier is based on the 12AU7 valve (part number ECC82 in Europe). The schematic came from here, it’s a nice kit, but lacked a power supply and the layout wasn’t quite what we needed for kits in TinkerSoc. I added a LDO 12v regulated power supply, an input volume control pot and kept the design single layered (with one jump). The final schematic can be viewed here

Tube Amplifier - [Link]

3 Jul 2014

obr1552_1

Switch-mode regulator Traco TSR 0.5 will give you as much as you need. If you have an application, where 0.5A is sufficient, then the new series of DC/DC modules is ideal for you.

Maybe, it´s worth to ask a question, whether it makes sense to use a switch-mode regulator for such a low current? For sure yes, at least because of two reasons. If we need to create 3.3V from for example 12V, then at a current of 0.5A a power loss of 4.35W appears at a classic linear regulator. That´s already a quite considerable power, able to heat up a device – especially at smaller enclosures and a dense population on a PCB.

Another reason is energy saving – especially at battery powered devices. Switch mode power supplies (SMPS) have a “genial” feature, that thanks to their high efficiency we use practically whole power drawn from a source, i.e. if we need say 5V/0.5A from a 15V source – we won´t take from it 0.5A but only approx. 0,17-0,18A.

Novelty of company Traco Electronic – series TSR 0.5 is by its function very similar to well known, proven DC/DC regulators TSR1 or TSRN1. The main difference is in a smaller allowed current and a feelingly lower price . That ´s why this series is very suitable for any application, where a current of 0.5A will be sufficient. A big advantage can be a wide operating temperatures range from -40 to +90°C (power derating 5%/K at temperature above 80°C). Maximum input voltage of 32V enables a usage even at power supplying from various alternative energy sources with a big input voltage fluctuations.

This novelty is so far available in a version with 5V output voltage (TSR 0.5-2450) and soon there will be another.

Why to pay for the current, which you won’ t use? - [Link]

3 Jul 2014

IMG_20140630_184012

MSP430G2452 acting as a TMS0803 calculator chip. Emulates TI DataMath 2500II and Sinclair Scientific Calculators.

TMS0803/5 Emulating Calculator Build - [Link]


3 Jul 2014

rcj_mCube_accelerometer_MEMS

The world’s smallest inertial sensors have already taken China by storm and are poised to take on the rest of us with their software iGyrpo which is affordable by any smartphone or tablet maker: R. Colin Johnson @NextGenLog

Worlds Smallest Acceleronmeter Priced for Any Budget - [Link]

3 Jul 2014

simple_laser_power_meter_1-600x593

Here’s a cheap and simple Laser Power Meter LPM for small power source, based on “MarioMaster LPM meter” by Davide Gironi:

This type of meter uses a ThermoElectric Cooling module (TEC) to measure the power of a laser. The TEC will absorb the laser light, and transform the heat generated by the laser beam to an electrical signal.
An operational amplifier is used then to amplify the signal and ouput it to a volt meter.
Voltage meter will display the power in W unit of the laser beam you are testing.
The TEC takes a little amount of time to heat, so wait until your reading became stable.
This type of meter is simple and cheap to build.
It can measure laser power up to 2W, with an accurancy of +-10mW.

[via]

A cheap and simple Laser Power Meter LPM for small power source  - [Link]

 

3 Jul 2014

SP2-600x362

Geir Andersen over at LetsMakeRobots has designed and built this cool solder paste dispenser:

As I’m doing SMD prototypes I wanted to do reflow soldering instead of hand soldering and needed a solder paste dispenser.
The professional ones are not that expensive but you need an air compressor and I was trying to avoid that extra cost and noise. So I came up with this design.
It uses a PICAXE M14 microcontroller and ULN2003 Darlington driver to run the 28BYJ-48 stepper motor. As a stepper the 28BYJ-48 sucks with its gear ratio, but for this purpose it is cheap and has lot of torque. For my type of work and one-off prototypes it works great.

[via]

DIY solder paste dispenser - [Link]

2 Jul 2014

1-recordbreaki

by Fujitsu:

Fujitsu Laboratories Ltd. today announced the development of a receiver circuit capable of receiving communications at 56 Gbps. This marks the world’s fastest data communications between CPUs equipped in next-generation servers. In recent years, raising data-processing speeds in servers has meant increasing CPU performance, together with boosting the speed of data communications between chips, such as CPUs. However, one obstacle to this has been improving the performance of the circuits that correct degraded waveforms in incoming signals. Fujitsu Laboratories has used a new “look-ahead” architecture in the circuit that compensates for quality degradation in incoming signals, parallelizing the processing and increasing the operating frequency for the circuit in order to double its speed. This technology holds the promise of increasing the performance of next-generation servers and supercomputers.

Record-breaking 56 gbps receiver circuit for communications between CPUs - [Link]

2 Jul 2014

integrated-circuit-christies

David Szondy @ gizmag.com writes:

If it weren’t for the microchip, your smartphone would be size of a building and need its own power plant to work. Thanks to the integrated circuit and its modern incarnation in the microchip, electronics are a bit easier to carry around than that, and this week, Christie’s put one of the very first integrated circuits up for auction. Designed and constructed in 1958 by Texas Instruments, it’s one of the three earliest “chips” ever made and went on the block with an estimated value of up to US$2 million.

One of the world’s first integrated circuits goes up for auction - [Link]

2 Jul 2014

OSLRF01-ArduinoUNO1-571x650www.berryjam.eu writes:

Here we have it – an affordable Open Source Laser RangeFinder – OSLRF-01 from www.lightware.co.za. You can order it fully assembled and working or just PCB and optics (all other components have to find by Yourself).

An Arduino Based Laser Rangefinder - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits | Electronics Projects