Home Blog  





5 Jul 2014

Audio

by elektor.com:

STMicroelectronics’ has introduced a new digital audio processor with a >100 dB SNR and Dynamic Range. The device can process most digital input formats including 6.1/7.1 channel and 192 kHz, 24-bit DVD-audio and DSD/SACD. When configured in a 5.1 application its additional 2 channels can be used to supply audio line-out or headphone drive.

The STA311B is a single chip solution for digital audio processing and control in multichannel applications, providing FFXTM (Full Flexible Amplification) compatible outputs. Together with a FFXTM power amplifier it can provide high-quality, high-efficiency, all-digital amplification.

High Dynamic-Range Audio Processor - [Link]

5 Jul 2014

F5KSWEYHX42R7K7.MEDIUM

Solderdoodle is a portable, cordless, USB rechargeable soldering iron. Solarcycle @ instructables.com writes:

After learning how to use 3D printers, one of my friends asked if there was such a thing as a USB soldering iron and I said that I had instructions to build one, but the battery was external. I then realized that I could create my own case design on a 3D printer and put the battery, charge controller, and other parts inside as one single unit! It worked! .stp files for the case are provided below.

Solderdoodle: Open Source USB Rechargeable Soldering Iron - [Link]

5 Jul 2014

2-scientistsex

by Nancy Owano @ phys.org:

Thumb-size vacuum tubes that amplified signals in radio and television sets in the first half of the 20th century might seem nothing like the metal-oxide semiconductor field-effect transistors (MOSFETs) that dazzle us with their capabilities in today’s digital electronics, say two scientists, but it might be time for fresh thinking about vacuum tubes and even some mashing-up for surprising results. Jin-Woo Han, research scientist, and Meyya Meyyappan, chief scientist for exploration technology, at NASA Ames Research Center in California, wrote an article that appeared in IEEE Spectrum on Monday, which details their explorations of a vacuum channel transistor. Their article indicates “vacuum channel transistor” is a phrase to watch in the context of what’s next in transistor technology. The what’s-next conversation is certainly one that continues.

Scientists explore mash-up of vacuum tube and MOSFET - [Link]

5 Jul 2014

What’s inside one of those omni-directional laser barcode scanners you use at the supermarket, and how does it work? Motorola / Symbol LS9208

EEVblog #637 – Omni Directional Laser Barcode Scanner Teardown - [Link]


4 Jul 2014
Four carbon nanotubes transistor channels are all controlled by the same local back gate.

Four carbon nanotubes transistor channels are all controlled by the same local back gate.

IBM has given itself a deadline of 2020 to perfect the nanotube transistor, for which there are significant technological hurdles: R. Colin Johnson @NextGenLog

IBM Will Produce Nanotube Transistors by 2020 or Give Up - [Link]

4 Jul 2014

connected

by tinkering.graymalk.in:

The amplifier is based on the 12AU7 valve (part number ECC82 in Europe). The schematic came from here, it’s a nice kit, but lacked a power supply and the layout wasn’t quite what we needed for kits in TinkerSoc. I added a LDO 12v regulated power supply, an input volume control pot and kept the design single layered (with one jump). The final schematic can be viewed here

Tube Amplifier - [Link]

3 Jul 2014

obr1552_1

Switch-mode regulator Traco TSR 0.5 will give you as much as you need. If you have an application, where 0.5A is sufficient, then the new series of DC/DC modules is ideal for you.

Maybe, it´s worth to ask a question, whether it makes sense to use a switch-mode regulator for such a low current? For sure yes, at least because of two reasons. If we need to create 3.3V from for example 12V, then at a current of 0.5A a power loss of 4.35W appears at a classic linear regulator. That´s already a quite considerable power, able to heat up a device – especially at smaller enclosures and a dense population on a PCB.

Another reason is energy saving – especially at battery powered devices. Switch mode power supplies (SMPS) have a “genial” feature, that thanks to their high efficiency we use practically whole power drawn from a source, i.e. if we need say 5V/0.5A from a 15V source – we won´t take from it 0.5A but only approx. 0,17-0,18A.

Novelty of company Traco Electronic – series TSR 0.5 is by its function very similar to well known, proven DC/DC regulators TSR1 or TSRN1. The main difference is in a smaller allowed current and a feelingly lower price . That ´s why this series is very suitable for any application, where a current of 0.5A will be sufficient. A big advantage can be a wide operating temperatures range from -40 to +90°C (power derating 5%/K at temperature above 80°C). Maximum input voltage of 32V enables a usage even at power supplying from various alternative energy sources with a big input voltage fluctuations.

This novelty is so far available in a version with 5V output voltage (TSR 0.5-2450) and soon there will be another.

Why to pay for the current, which you won’ t use? - [Link]

3 Jul 2014

IMG_20140630_184012

MSP430G2452 acting as a TMS0803 calculator chip. Emulates TI DataMath 2500II and Sinclair Scientific Calculators.

TMS0803/5 Emulating Calculator Build - [Link]

3 Jul 2014

rcj_mCube_accelerometer_MEMS

The world’s smallest inertial sensors have already taken China by storm and are poised to take on the rest of us with their software iGyrpo which is affordable by any smartphone or tablet maker: R. Colin Johnson @NextGenLog

Worlds Smallest Acceleronmeter Priced for Any Budget - [Link]

3 Jul 2014

simple_laser_power_meter_1-600x593

Here’s a cheap and simple Laser Power Meter LPM for small power source, based on “MarioMaster LPM meter” by Davide Gironi:

This type of meter uses a ThermoElectric Cooling module (TEC) to measure the power of a laser. The TEC will absorb the laser light, and transform the heat generated by the laser beam to an electrical signal.
An operational amplifier is used then to amplify the signal and ouput it to a volt meter.
Voltage meter will display the power in W unit of the laser beam you are testing.
The TEC takes a little amount of time to heat, so wait until your reading became stable.
This type of meter is simple and cheap to build.
It can measure laser power up to 2W, with an accurancy of +-10mW.

[via]

A cheap and simple Laser Power Meter LPM for small power source  - [Link]

 



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits | Electronics Projects