Home Blog  





23 Jul 2014

0625npdtboschby electronicdesign.com:

Designed for high-precision, always-on, six- and nine-axis applications, such as smartphones, tablets, remote controls, and game controllers, the BMI160 inertial measurement unit (IMU) combines a 16-bit, 3-axis, low-g accelerometer and ultra-low-power, 3-axis gyroscope. When the accelerometer and gyroscope are in full operation mode, typical current consumption for Bosch Sensortec’s IMU is 950 µA.

Inertial Measurement Unit Consumes Less Than 1 mA - [Link]

3 Jul 2014

rcj_mCube_accelerometer_MEMS

The world’s smallest inertial sensors have already taken China by storm and are poised to take on the rest of us with their software iGyrpo which is affordable by any smartphone or tablet maker: R. Colin Johnson @NextGenLog

Worlds Smallest Acceleronmeter Priced for Any Budget - [Link]

17 May 2014

Get fit for summer with your own activity monitor from this Adafruit Tutorial!

Keep that New Years resolution of getting fit by staying safe with a neopixel motion activated running band powered by Flora, Adafruit’s wearables electronics platform.

This is the activity monitor you’ll want to wear outside and at the dance club!

Get Fit For Summer With A DIY Neopixel Motion Activated Running Band - [Link]

 

17 Apr 2014

01Gadget Gangster @ instructables.com writes:

This guide is intended to everyone interested in in using Accelerometers and Gyroscopes as well as combination IMU devices (Inertial Measurement Unit) in their electronics projects

We’ll cover:
- What does an accelerometer measure?
- What does a gyroscope (aka gyro) measure?
- How to convert analog-to-digital (ADC) readings that you get from these sensor to physical units (those would be g for accelerometer, deg/s for gyroscope)
- How to combine accelerometer and gyroscope readings in order to obtain accurate information about the inclination of your device relative to the ground plane

Accelerometer & Gyro Tutorial - [Link]


31 Mar 2014

pcb

The accelerometer can measure acceleration in two axis using Analog Devices ADXL202. +-2g can be measured in each axis.

The accelerometer can measure acceleration and time. Using the time and the acceleration it can calculate and display:Time (s)

  • Average acceleration (m/s2)
  • Instantanous acceleration (min/max) (m/s2)
  • Speed (m/s & km/h)
  • Distance (m & km)

The mass of the object can also be input, the accelerometer can then also display:Instantenous Force (N)

  • Average Force (N)
  • Instantenous Power (kW and HP) * .

Bullit Accelerometer – Accelerometer with microcontroller and display - [Link]

 

28 Jan 2014

WunderBar

The team describes it as the world’s first starter-kit designed for App Developers to build apps, for the devices and things around them. A “chocolate bar” with detachable bits of different sensors and Bluetooth Low Energy, connected to a mini wifi base, together with easy-to-use  SDKs for iOS, Android, node.js, and our simple REST API.

The WunderBar is the easiest way to create useful connected devices. It works out-of-the-wrapper, contains a host of awesome sensors, and is dead-simple to program.

Sensors include: Light, color, distance, temperature, humidity, remote control (IR), accelerometer, and gyroscope. Two additional sensors will be chosen by you.

WunderBar – Internet of Things Starter Kit for App Developers - [Link]

29 Dec 2013

Screenshot_th

This project is an accelerometer data acquisition system for automotive suspension analysis. In other words it’s a low frequency spectrum analyzer based on Lanchpad TIVA Series from Texas Semiconductors. It’ s a spectrum analyzer for mechanical frequencies (max. 50 Hz). In my application I use this analyzer for the signals from a suspension of a car, that contain information about comfort (ride) of a vehicle.

Low Frequency Spectrum Analyzer for Automotive Suspension Analysis - [Link]

14 Dec 2013

ST-LSM6DB0-Always_On_6_Axis_Sensors

STMicroelectronics have announced the LSM6DB0, the latest addition to its iNEMO family.

It packs a 3-axis accelerometer, 3-axis gyro and low energy ARM-based Cortex processor in a tiny 3 x 3 mm package.

This chip is designed to interface with baseband chipsets that don’t have a sensor co-processor. Additional external sensors can also be hooked up via its I2C interface, allowing the on-board processor to take care of all sensor-related functions to help minimize application latency at a system level. The device is fully compatible with all of the latest mobile operating systems including Android Kit-Kat 4.4. The sensor’s performance is the result of true 6-axis sensing, where both the 3-axis accelerometer and 3-axis gyroscope are manufactured on the same chip. They operate synchronously at the same output data rate,combinig correlated, true six-degree-of-freedom motion and not just separate acceleration and angular-rate inputs. [via]

A 6-axis Inertial Motion Sensing Device - [Link]

22 Nov 2013

self-balancing-bot-1-600x400

Bajdi documented his Arduino self balancing bot build:

For the electronics I used one of my own PCB creations, a Bajduino of course It’s just a small (50x50mm) break out board for an ATmega328. I’m running the ATmega @ 16MHz and 3.3V. It’s out of spec according to the datasheet but it works… I also needed an IMU of course. I found a MP6050 sensor in my parts box. The MPU6050 combines a 3 DOF gyro and 3 DOF accelerometer in a small package, ideal for a self balancing bot.

[via]

Building a self balancing bot - [Link]

27 Aug 2013

rcjEpsonIMU

Epson has combined the reliability of quartz crystals with the tiny dimensions of MEMS devices to create a tiny high-resolution six degree-of-freedom inertial measurement unit that can track motion for everything from aerospace to oil-well drilling. [via]

Epson Downsizes Inertial Measurement Units - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits | Electronics Projects