Home Blog  





6 May 2013

AZIZ-LED-Microscope-Illuminator-Project-W600

Here’s an interesting project by Steve of Tangent Audio the AZIZ project, a microcontroller-based LED microscope illuminator:

AZIZ is an LED microscope illuminator that I designed and built from scratch. It is designed around a Texas Instruments TLC59116 constant-current PWM LED driver chip, and an Atmel ATTiny1634 8-bit microcontroller.

[via]

AZIZ: DIY LED microscope illuminator - [Link]

19 Feb 2013

avrdudess1

AVRDUDESS is a GUI for AVRDUDE, a tool for programming Atmel microcontrollers – [via]

Some key features:

  • Supports all programmers and MCUs that AVRDUDE supports
  • Supports presets, allowing you to change between devices and configurations quickly and easily
  • Drag and drop files for easy uploading
  • Automatically lists available COM ports

AVRDUDESS – A gui for AVRdude - [Link]

30 Nov 2012

XMEGA-A1 Xplain development kit provides a straightforward way to development of applications with Atmel XMEGA microcontrollers.

XMEGA a family of powerful 8/16-bit RISC microcontrollers with many built-in peripherials (DMA, RTC, LCD driver, 12 bit ADC,…) is ideally suited for relatively high performance applications, where we will with favor use its features – often without a need to add any other peripherials.

In order to get easily familiar with AVR XMEGA family features, ATMEL also produces fevelopment/ evaluation kits for these processors. From several types available, in our offer you can find on stock the XMEGA-A1 Xplain with the ATxmega128A1 processor. The development kit enables development and testing of applications including usage of ADC, DAC and I/O ports. The kit is power-supplied via a USB port, that´s why you can supply it from a PC but even from an external AC adapter with an USB connector output. A detailed description can be found in the Xplained user guide, Xplained getting started and Xmega basics training documents.

On the Atmel website you can find many documents about various processor´s parts and its usage in the concrete applications.

Atmel AVR Xplain will explain it to you directly - [Link]

31 Aug 2012

The ATF697FF is the newest member of Atmel’s SPARC V8 processor family and the industry’s first radiation-hardened (RAD Hard) high-performance aerospace microprocessor that can be reconfigured on-the-fly. The ability to reconfigure on-the-fly allows making on-going design modifications to satellites, including specification updates, in-flight adjustments during trial flights and post-launch alterations.

The new device is a reconfigurable processor that combines an AT697F processor and an ATF280F SRAM-based FPGA unit in a single multichip module. It can run at speeds up to 100MHz and it is low-power, down to 0.7W. Designed and developed by the Atmel Aerospace Business Unit in Rousset, France, adds the flexibility of a reprogrammable FPGA to the reliability of a powerful core processor running application software. It is targeted at systems that require reconfiguration of peripherals and interfaces, making it easy to comply and stay up-to-date with evolving standards that are used on many space missions, such as SpaceWire, CAN or IEEE1553. The flexibility of the ATF697FF processor is also beneficial for late design modifications performed on Earth, for in-flight adjustments on satellites and for space trial operations. [via]

Reconfigurable Processor for Space Applications - [Link]


3 Aug 2012

Controlling temperature has been a prime objective in various applications including refrigerators, air conditioners, air coolers, heaters, industrial temperature conditioning and so on. Temperature controllers vary in their complexities and algorithms. Some of these use simple control techniques like simple on-off control while others use complex Proportional Integral Derivative (PID) or fuzzy logic algorithms. In this project Shawon Shahryiar discusses about a simple control algorithm and utilize it intelligently unlike analogue controllers. Here are the features of this controller:

  • Audio-visual setup for setting temperature limits.
  • Fault detection and evasive action.
  • Temperature monitoring and display.
  • Audio-visual warning.
  • System status.
  • Settable time frame.
  • Data retention with internal EEPROM memory.

Intelligent temperature monitoring and control system using AVR microcontroller - [Link]

16 Jul 2012

Does this sound familiar to you? After spending many hours on optimizing for speed and memory your super-duper MCU application, you can only conclude that it will not run on an Arduino board. You have built the shield (the Arduino compatible extension board) with your special I/O and you wrote most of the software, but these last functions that should add that finishing touch just don’t fit in the board’s memory. Maybe Rascal can help?

Built around a 400 MHz AT91SAM9G20 ARM9 from Atmel, the Rascal is an open source Linux board compatible with Arduino extension cards or shields. Programming the board is easy thanks to a library written in Python from Pytronics that allows easy access to peripherals and shields. The Rascal’s firmware comes with a web server that can serve as a programming interface; you can write your applications directly in a web browser connected to the Rascal board. [via]

Rascal Combines Linux and Arduino - [Link]

15 Jul 2012

Atmel semiconductors have earned a big popularity all over the world. That´s why in our portfolio can be found a lot of standard stock types and upon request, we´re able to supply you with virtually any Atmel component.

AAVR, ATmega, ARM, ATtiny, 89C2051, 89S… these are the terms familiar to perhaps every developer of applications with microcontrollers. Atmel products have gained their reputation also thanks to a fact, that in their wide portfolio can be found microcontrollers for a wide spectrum of applications – from simple ones to relatively sophisticated powerful applications. Besides standard stock types, also many other types, can be found in our webshop, which we´re usually able to provide you within few days. Who ever tried to use any – even relatively simple and cheap microcontroller, knows, that such a component is able to add an unbelievable functionality and flexibility to a target device, most often inimplementable or only inefficiently implementable from discrete components. Atmel also provides a vast support in a form of application notes, development SW and HW, or examples in a source code – all are free to download at Atmel website.

Atmel components are here for you - [Link]

10 Jul 2012

The Akafugu LED Candle is an artificial candle that imitates the flickering of a real candle. Use it in place of a real tea candle: It will fit inside a tea candle casing or any holder made for tea candles.

FEATURES:

  • Randomly flickering LED: Imitates a candle
  • Fits inside a tea candle casing
  • Open Source Firmware (available at GitHub)
  • Open Source Hardware: Eagle PCB design files available at GitHub
  • On-board ISP header for upgrading firmware

LED Candle - [Link]

10 Jul 2012

Akafugu writes:

We’ve added a new sheet that covers most of the chips that were missing in the Atmel ATmega and ATTiny families, specifically the ones that come in only SMD packages. The chips included are ATtiny 4/5/9/10/20/40/24a/44/84a/43u/87 and 167. We’ve also added the ATmega8/48/88/268/328 in TQFP package which has a different pinout than the DIP package covered in the original reference sheet.

Microcontroller Reference Sheet SMD v1.0 - [Link]

20 Apr 2012

The Atmel® SAM3 family of ARM® Cortex™-M3 Flash-based microcontrollers (MCU) is expanding with 40 new devices in the mix that provide more memory options and more connectivity. With this high-performance, highly integrated and power-efficient portfolio, you’ll find just the right devices to meet your unique design requirements.

SAM3 family

A powerful new family of microcontrollers from Atmel with Cortex™ M3 cores (rev 2.0). The new microcontrollers are energy efficient and the supply voltages range from 1.62 to 3.6 V. They are designed to make circuit board layouts simpler and keep system costs low. The circuits have a broad selection of interfaces and support Atmel’s touch control system, QTouch.

SAM3N – (Entry point) Entry-level model to ARM Cortex M3 technology with a 3-layer bus (AHB), 10 DMA channels and clock frequencies up to 48 MHz. UART, SPI and I2C interfaces. Pin-to-pin compatible with the SAM7S and SAM3S series. Up to 79 I/Os, 48-/64-/100-pin packages.

SAM3S – (General purpose) Mid-range model with a 4-layer bus, 21 DMA channels and clock frequencies up to 64 MHz. Full-speed (FS) USB, high-speed SD/SDIO/MMC plus USART and SPI. Pin-to-pin compatible with SAM7S. Up to 79 I/Os, 48-/64-/100-pin packages.

SAM3U – (High-speed) Fast 100 Mbps microcontroller for more advanced applications with complex communications. 5-layer bus, 22 DMA channels and clock frequencies up to 96 MHz. 480 Mbps high-speed USB, high-speed SD/SDIO/MMC plus USART and SPI. Up to 96 I/Os, 100-/144-pin packages.

SAM3 family – NEW 32-bit ARM Microcontroller - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits