Home Blog  

9 Dec 2014


Serial camera module that captures time-lapse and stop-motion videos plus images to uSD card. Use with any micro like mbed and Arduino.

ALCAM allows any embedded system with a serial interface (UART, SPI or I2C) to capture JPG/BMP images and also to record them right onto an SD card. Also, ALCAM gives you the ability to create time-lapse and stop-motion AVI videos and save them directly to the SD card. All done through a set of simple and well documented serial commands. ALCAM can also capture images and videos though a special pin, without the need to send any commands.

ALCAM-OEM – Serial camera module - [Link]

1 Dec 2014


RTC or real-time clock is a kind of computer clock for keeping track of the recent or most current time. Commonly, RTCs are present in almost all or any device, which are electronic in nature that needs to keep time accurate. Meanwhile, temperature sensors are devices that gather data concerning the temperature from a source and convert it to a form that can be understood either by an observer or another device. These sensors can be in various forms and are used for a wide variety of purposes, from simple home use to extremely accurate and precise scientific use. They play a very important role almost everywhere that they are applied; knowing the temperature helps people to pick their clothing before a walk outside just as it helps chemists to understand the data collected from a complex chemical reaction.

The circuit uses a PCA8565 CMOS real time clock and calendar optimized for low power consumption. A programmable clock output, interrupt output and voltage-low detector are also provided. All address and data are transferred serially via a two-line bidirectional I2C-bus with a maximum bus speed of 400kbit/s. The built-in word address register is incremented automatically after each written or read data byte. It also includes a MCP9801 digital temperature sensor capable of reading temperatures from -55°C to +125°C. Temperature data is measured from an integrated temperature sensor and converted to digital word with a user selectable 9 to 12 bit Sigma Delta Analog to Digital Converter. The MCP9801 notifies the host controller when the ambient temperature exceeds a user programmed set point. The ALERT output is programmable as either a simple comparator for thermostat operation or as a temperature event interrupts. Communication with the sensor is accomplished via a two-wire bus that is compatible with industry standard protocols. This permits reading the current temperature, programming the set point and hysteresis and configuring the device. Address selection inputs allow up to eight MCP9801 sensors to share the same two-wire bus for multizone monitoring. Small physical size, low installed cost and ease of use make the MCP9801 an ideal choice for implementing sophisticated temperature system management schemes in a variety of applications.

The board is basically a carrier for the two IC’s that make up the Real Time Clock (RTC), PCA8565 and the Digital Temperature Sensor, MCP9801. It conveniently combines the two for applications that require RTC and temperature sensing. A particularly useful feature of this RTC is that it can detect power down and record the time at that event. This is ideal for connecting to a microcontroller that does not have an RTC.

I2C Temperature Sensor & Real Time Clock - [Link]

11 Nov 2014


by sparkyswidgets.com:

MinieC eC interface is a very cost effective solution for adding eC sensing capability to any project. This unit takes the analog complexity out of measuring the conductivity of a solution.

MinieC I2C eC interface - [Link]

8 Nov 2014


by elektor.com:

The Company AMS AG has introduced the non-contact AS5601 Hall-based rotary magnetic position encoding chip. It works by sensing changes in the magnetic field components perpendicular to the surface of the chip and converts field changes into voltages to produce incremental A/B outputs and absolute position information that can be read over an I²C bus. Analog signals from the built-in Hall sensors are amplified and filtered before conversion to binary values. A hardwired CORDIC block (Coordinate Rotation Digital Computer) calculates the angle and magnitude of the magnetic field vector. Magnetic field intensity is used by the automatic gain control (AGC) to adjust the amplification level which compensates for temperature and magnetic field variations.

New Rotary Encoder - [Link]

7 Oct 2014


Printby linear.com:

The LTC2946 is a high or low side charge, power and energy monitor for DC supply rails in the 0V to 100V range. An integrated ±0.4% accurate, 12-bit ADC and external precision time base (crystal or clock) enables measurement accuracy better than ±0.6% for current and charge, and ±1% for power and energy. A ±5% accurate internal time base substitutes in the absence of an external one. All digital readings, including minimums and maximums of voltage, current and power, are stored in registers accessible by an I²C/SMBus interface. The part’s wide operating range makes it ideal for monitoring board energy consumption in blade servers, telecom, solar and industrial equipment, and advanced mezzanine cards (AMC).

LTC2946 – Wide Range I2C Power, Charge and Energy Monitor - [Link]

30 Sep 2014

The MAX5825PMB1 peripheral module provides the necessary hardware to interface the MAX5825 8-channel DAC to any system that utilizes Pmod™-compatible expansion ports configurable for I²C communication. The IC features eight independent 12-bit accurate internally buffered voltage-output DAC channels. The IC also features an internal reference that is selectable between 2.048V, 2.500V, and 4.096V (4.096V reference operation is not supported with a standard 3.3V Pmod-port power supply).

MAX5825PMB1 Peripheral Module Board - [Link]

19 Jul 2014



by berryjam.eu:

Main task – advanced communication between multiple Arduinos using I2C bus.

Main problem – most online tutorials covers just one blinking LED with almost no practical use. Slave just executes ONE and SAME function every time Master asks about it. I’d like to outsource slave Arduinos for zillions of tasks.

Proposed solution – simple protocol which enables to send any number of commands to Slave, opposing single return from simple Wire.onRequest();

Simple I2C protocol for advanced communication between Arduinos - [Link]

19 Jun 2014


blog.atx.name writes:

Some time ago, I stumbled upon an article about 25¢ I²C adapter. I usually use my Raspberry Pi to interface with I²C devices, but having it right on my notebook seemed like quite useful thing, so I decided to build a project around it. Altough the mentioned article says that I²C is not supported on Intel cards on Linux (all of this was tested on Dell Latitude E5530 which does have Intel HD4000), I decided to try anyway. A lot has probably changed since 2008 when it was written.

TWILight – VGA I²C breakout board - [Link]

3 May 2014

by bajdi.com:

I’ve been looking for ways to control my Service droid robot, my Service droid robot has an ATmega2560 (with Arduino bootloader) and a Raspberry Pi. My goal is to control it over wifi. But I wanted to start with some more simpler things first. I’ve recently found some python code on letsmakerobots.com that lets me sent data over I2C from a Raspberry Pi to a micro controller.

Before getting this to work you need to configure I2C on the Raspberry Pi. Adafruit has written a nice guide how to do this. I also installed the python-SMBus package: sudo apt-get install python-smbus.

Controlling an Arduino through a Rapsberry Pi webserver - [Link]

2 May 2014

Digispark Pro – The tiny Arduino IDE ready, usb and mobile dev board and ecosystem – cheap enough to leave in any project! Wi-fi, BLE, and 25+ shields!

Serial over USB debugging, USB programmable, 14 i/o, SPI, I2C, UART, USB Device Emulation, Mobile Development Ready, Optional BT, BLE, Mesh, and Wi-Fi.

The super small, dirt cheap, always open source, Arduino compatible, USB (and Mobile and Wireless!) development (and production) platform, and follow-up to the original Digispark.

Easier to use, more pins, more program space, more features, more reliable – supporting the entire existing Digispark ecosystem of 25+ shields and adding Wi-Fi, Bluetooth, BLE shields and more! Ready for all your projects – including mobile hardware development! All still super affordable!

The Digispark Pro Ecosystem is the cheapest, Arduino compatible development platform for Mobile and Wireless hardware development.

Digispark Pro – tiny, Arduino ready, mobile & usb dev board! - [Link]





Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits