Home Blog  





20 Aug 2014

photo-main

Open Analog is an organization dedicated to exciting makers about analog hardware. We make popular ICs into transistor level kits!

 The first Open Source analog IC kit from Open Analog has been created, assembled, and verified. We call it the SevenFortyFun and it is a transistor level op amp kit. You can finally get the chance to understand whats going on inside those ICs! Now we need your help to proto the next revision (I gotta eat somehow!). This Kickstarter campaign is to raise money in order to print the first batch of PCBs and order parts for production volume.

741 Op-Amp Kit - [Link]

22 Jul 2014

DI5395Fig_1

by Peter Demchenko @ edn.com:

Low-current switching regulator ICs often use a Darlington as the output switch. The power conversion efficiency in this case can be improved with the help of only two cheap components. To make this possible, the chip should have a separate pin for the collector of the driver transistor Q1 (Figure 1). At startup, D1 forms a path for the collector current of Q1. Later, D1 and C1 comprise a current-additive rectifier which enhances the collector voltage and current of Q1, hence reducing voltage drop on the closed switch Q2.

Improve efficiency of low-cost switcher - [Link]

2 Jul 2014

integrated-circuit-christies

David Szondy @ gizmag.com writes:

If it weren’t for the microchip, your smartphone would be size of a building and need its own power plant to work. Thanks to the integrated circuit and its modern incarnation in the microchip, electronics are a bit easier to carry around than that, and this week, Christie’s put one of the very first integrated circuits up for auction. Designed and constructed in 1958 by Texas Instruments, it’s one of the three earliest “chips” ever made and went on the block with an estimated value of up to US$2 million.

One of the world’s first integrated circuits goes up for auction - [Link]

26 Jun 2014

004_PIC

This project is a solution to power up most of devices or projects requiring dual (+/-) adjustable power supply. The circuit is based on LM317 positive and LM337 negative voltage regulators. LM317 series of adjustable 3 terminal regulator is capable of supplying in excess of 1.5A over a 1.2V to 30V DC output range, due to TO3 package of IC and large heat sink the power supply can handle maximum load current.

Dual Adjustable Power Supply - [Link]


16 Jun 2014

88-researchersd

by Matt Mcgowan @ phys.org:

Engineering researchers at the University of Arkansas have designed integrated circuits that can survive at temperatures greater than 350 degrees Celsius – or roughly 660 degrees Fahrenheit. Their work, funded by the National Science Foundation, will improve the functioning of processors, drivers, controllers and other analog and digital circuits used in power electronics, automobiles and aerospace equipment – all of which must perform at high and often extreme temperatures.

“This ruggedness allows these circuits to be placed in locations where standard silicon-based parts can’t survive,” said Alan Mantooth, Distinguished Professor. “The circuit blocks we designed contributed to superior performance of signal processing, controllers and driver circuitry. We are extremely excited about the results so far.”

Circuits capable of functioning at temperatures greater than 650 degrees fahrenheit - [Link]

28 May 2014
Interferometric TFT image

Interferometric TFT printed above an oxide covered (blue) metallization layer of a CMOS chip.

Stacking memory is just most obvious application of this ultra-cheap method of stacking 3D circuitry within the metallization layers of standard CMOS chips, but I’m sure that when designers put on their thinking cap they’ll find many more useful applications.: R. Colin Johnson @NextGenLog

Chips On-the-Cheap Funded by SRC – [Link]

27 May 2014

ti-tl431

by Ken Shirriff:

A die photo of the interesting but little-known TL431 power supply IC provides an opportunity to explore how analog circuits are implemented in silicon. While the circuit below may look like a maze, the chip is actually relatively simple and can be reverse-engineered with a bit of examination. This article explains how transistors, resistors, and other components are implemented in silicon to form the chip below.

The TL431 is a “programmable precision reference”[1] and is commonly used in switching power supplies, where it provides feedback indicating if the output voltage is too high or too low. By using a special circuit called a bandgap, the TL431 provides a stable voltage reference across a wide temperature range. The block diagram of the TL431 below shows that it has a 2.5 volt reference and a comparator[1], but looking at the die shows that internally it is quite different from the block diagram.

Reverse-engineering the TL431 - [Link]

22 May 2014

appliedmater

by Nancy Owano:

When a global leader in providing equipment, services and software used for manufacturing semiconductors makes an announcement, industry players sit up and listen, as the technologies are going to impact market activity in devices such as smartphones, flat screen TVs and solar panels. Tuesday’s announcement from Applied Materials was big. The Santa Clara, California based equipment supplier announced the launch of its Endura Volta CVD Cobalt chip making machine. This is the only tool capable of encapsulating copper interconnects in logic chips beyond the 28nm node by depositing precise, thin cobalt films, said the company.

Applied Materials sets cobalt on path to future chips - [Link]

8 May 2014

rememf1

by Michael Dunn:

Sometimes, we forget the implications of Moore’s Law, and just how amazing our IC technology is compared to yesteryear’s. Pack-rat that I am, it’s no trouble for me to peruse what used to pass for high-tech – and now, you can have a look at it too!

IC packages used to be prettier, I think. Lots more gold and white ceramic happening. Packages that look as though they could go to outer space without breaking a sweat.

Remembrance of chips past - [Link]

23 Apr 2014

Instructions for Soldering and Desoldering SMDs featuring up-close shots of fine-pitch soldering.

Surface Mount Soldering 101 - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits