Home Blog  





13 Oct 2014

FBS5OK4HZN0SSTG.MEDIUM

by mlerman @ instructables.com:

This is the second version of my E260 modification. It uses an ATtiny13 MCU to control the timing of the printer and make it possible to print double sided PCBs at home.

As an electronic hobbyist and inventor I often need to make printed circuit boards (PCBs) in single or small quantities. Usually these are relatively simple circuits, an MCU, some input conditioning circuitry, some output circuitry, and usually they are single sided or perhaps double sided, with just a few vias. And usually I want them right now!

Toner Transfer (TT) has become the method of choice for most hobbyists. A laser printer is used to print an image of the PCB on special “transfer paper” which is then placed on the bare copperclad board and either ironed on or run through a modified laminator to transfer the image to the copper. When the PCB is etched, the toner acts as a resist, preserving the copper below it while the rest of the copper surface is etched away.

Modification of the Lexmark E260 for Direct Laser Printing of Printed Circuit Boards - [Link]

6 Oct 2014

NewImage41

A group of engineers have developed the smallest organic laser [via] :

The 8-µm-long device, which looks like a suspended bridge riddled with holes, is carved into a silicon chip coated with an organic dye. Integrated into microprocessor chips, such tiny lasers could one day speed up computers by shuttling data using light rather than electrons. They also could be valuable for sensors and lab-on-a-chip devices.

Engineers Build Ultrasmall Organic Laser - [Link]

29 Jul 2014

PlasmonLaser

by elektor.com:

A new type of sensor being developed by a team of researchers at the University of California, Berkeley based on Plasmon laser technology is so sensitive it may be able to detect the presence of land mines in situ. In a paper published recently in the journal ‘Nature Nanotechnology’ a team of researchers led by Xiang Zhang, UC Berkeley professor of mechanical engineering, have outlined how they have been able to find a way to increase the sensitivity of a light-based plasmon sensor to detect minute concentrations of explosives. The new sensor consists of a layer of magnesium fluoride sandwiched between a semiconducting layer of cadmium sulfide, and a sheet of silver.

New Sensor could sniff out Land Mines - [Link]

16 Jul 2014

Laser-Engraver-38x38_cdrom_1-600x450

Here’s a DIY 38mm x 38mm laser engraver build using CD-ROM/writer on ATmega328p by Davide Gironi:

A laser engraving machine, is a tool that uses lasers to engrave an object.
To build this tool I’ve used two old CD-ROM writer that lays around in my garage.
The X/Y positioning system it is build using the CD-ROM motor assembly. For the engraving laser i use the CD-ROM writer laser.
With this hardware the engraving area are will be almost 38mm x 38mm.

[via]

A DIY laser engraver build using DVD and CD-ROM/writer - [Link]


3 Jul 2014

simple_laser_power_meter_1-600x593

Here’s a cheap and simple Laser Power Meter LPM for small power source, based on “MarioMaster LPM meter” by Davide Gironi:

This type of meter uses a ThermoElectric Cooling module (TEC) to measure the power of a laser. The TEC will absorb the laser light, and transform the heat generated by the laser beam to an electrical signal.
An operational amplifier is used then to amplify the signal and ouput it to a volt meter.
Voltage meter will display the power in W unit of the laser beam you are testing.
The TEC takes a little amount of time to heat, so wait until your reading became stable.
This type of meter is simple and cheap to build.
It can measure laser power up to 2W, with an accurancy of +-10mW.

[via]

A cheap and simple Laser Power Meter LPM for small power source  - [Link]

 

2 Jul 2014

OSLRF01-ArduinoUNO1-571x650www.berryjam.eu writes:

Here we have it – an affordable Open Source Laser RangeFinder – OSLRF-01 from www.lightware.co.za. You can order it fully assembled and working or just PCB and optics (all other components have to find by Yourself).

An Arduino Based Laser Rangefinder - [Link]

30 Apr 2014

lt1683_laser_diode_driver

by Kalle Hyvönen:

Here’s a quick project I made in couple days or so. It is a push-pull step-down laser diode driver based on LT1683 SMPS controller chip from Linear Technology. The circuit works with 12-18V input and can put out about 1A to a 2V load. I used a PL140-105L planar ferrite transformer from Coilcraft which is quite overkill for this application (it is rated for 140W).

Switchmode laser diode driver based on LT1683 - [Link]

27 Apr 2014

od_2634_1_1396968248

Ian D. Miller made a Raspberry Pi powered laser engraver using two old DVD RW drives. He writes:

engravR is a Raspberry Pi powered laser engraver built primarily using two old DVD RW drives. It was built following the following tutorial: http://funofdiy.blogspot.com/2013/10/a-raspberry-pi-controlled-mini-laser.html Note that I did make changes to the code given there in order to allow remote engraving and to be able to read the kind of GCode that GCodeTools generates. It is available at the above GitHub link.

engravR – RPi Laser Engraver - [Link]

5 Apr 2014

F2KB86THTM2NHK4.MEDIUM

joebell @ instructables.com writes:

With a little practice, you can make excellent double-sided PCBs by combining a laser cutter with chemical etching. The basic idea is: the laser cutter blasts away spray painted etch resist, then chemicals eat away the exposed copper. Once the copper is gone, the underlying board can be cut again with the laser to make through-holes. No drilling required! After some setup and practice, you should get reliable boards with 8-mil trace/space and hundreds of holes in about 2 hours. You can even cut internal routing and odd board-shapes!

Double-sided PCBs with a laser cutter - [Link]

7 Mar 2014

ferrimagnets-feat

A team of scientists from the University of York, the Helmholtz-Zentrum Berlin (HZB) Germany, and Radboud University Nijmegen, the Netherlands, have developed a new class of magnetic material which flips magnetic state when zapped by an ultra fast laser pulse. This should pave the way to mass storage devices with improved performance and power efficiency compared to current day technology.

The new material demonstrates the use of a synthetic ferrimagnet comprising a sandwich of two ferromagnetic materials and a non-magnetic spacer layer. The spacer layer engineers the coupling between the two ferromagnets so that they align opposite one another. When subjected to an ultrafast laser pulse, this structure spontaneously switches its magnetic state representing writing a single bit of data. [via]

A New Class of Magnetic Material - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits