Home Blog  





18 Sep 2014

ds18b20_packages

Davide Gironi writes:

DS18B20 is a programmable resolution 1-wire digital thermometer.
It has an operating temperature range of -55°C to +125°C and is accurate to ±0.5°C over the range of -10°C to +85°C.
This library is an AVR implementation to retrive temperature from DS18B20.

Built using the reference document: “Using DS18B20 digital temperature sensor on AVR microcontrollers” by Gerard Marull Paretas, 2007.

[via]

A DS18B20 1-wire digital thermometer AVR ATmega library - [Link]

8 Sep 2014

IMG_0209

by Vadim Panov:

Back when I was only starting to dabble in electronics, I needed a project that would meet the following requirements:
simple to make;
original (i.e. done entirely by myself from scratch);
containing a microcontroller;
and maybe the most important of all, useful. I’ve had enough devices I assembled just to dismantle the whole thing a month later.
The thing I came up with at the time was a light swich for my room controlled over an IR remote from TV. Remote that I had used RC-5 protocol, hence the firmware is suited for any RC-5 compatible remote.
Everyone is familiar to the everliving problem with switching the lights off in your room before going to bed and stumbling back across the room. The IR switch I describe here solves that problem, and I can definitely tell that this project was a success – I am still using it with no regret.

Infrared remote controlled light switch with ATTiny2313 - [Link]

28 Aug 2014

stlinkgreycablewhite-1024x632

by embedded-lab.com:

I remember that once in the beginning I said that I don’t want to buy a programmer/debugger hardware for learning a new MCU like the STM32 and also STM32s already come with built-in bootloader to facilitate programming via USART just like Arduino. Still the second is true. Well what about the first? To my own surprise I actually acquired a number of STM32-related stuffs since the time I started playing and exploring them. I actually bought both ST-Link 1 and 2 programmer-debuggers and several STM32 boards from Waveshare Electronics (http://www.wvshare.com). I believe learning new stuffs is more valuable than anything else.

STM32 Programming Tips and Tricks - [Link]

28 Aug 2014

by Francois AUGER & Philippe Fretaud:

Many previous Design Ideas [1, 2] have shown how to use the Charlieplexing technique [3] to drive as many LEDs as possible with a minimum number of I/O lines. This Design Idea shows how you can drive three LEDs and scan three switches with only three I/O lines instead of six. Using the same principle, it will also be possible to manage four switches and two LEDs, or five LEDs and one switch. It works well with Atmel ATmega microcontrollers including the Arduino, and could be of particular interest for any eight-pin devices, or when you’ve simply run out of I/O.

3 pins, 3 LEDs, 3 buttons - [Link]


25 Aug 2014

ap_NXP_an11496

App note (PDF) on NXP’s Agile I/O expander, discussing its capabilities and how to use it efficiently.

I2C-bus GPIO devices are widely used and expand a control processor’s pins to 8-, 16- or 24- bits of general-purpose input or output. The characteristic of these I/O needs to be accurately known to efficiently use them in a system. This application note will explore the actual electrical characteristics of Agile I/O GPIO pins.

[via]

App note: Low Voltage Agile I/O GPIO Input/Output Characteristics - [Link]

15 Jul 2014

12f675pulse

by cuteminds.com:

Everytime we need to test a stepper motor controller we have to connect it to the parallel port of the computer or to a function generator to obtain the necessary pulses the realize the movements of the stepper.

This is a quicker method to check a controller integrity. Simply to make the life easier here is a square wave signals generator. A potentiometer or a trimmer regulates the pulse generation of the 12F675 microchip (a square wave, between 20 hz and 3khz). Ok, there are thousands of different ways to create a pulse generator, but we had a lot of microcontrollers.

12F675 pulse generator - [Link]

14 Jul 2014

Texaschippy

by elektor.com:

The ULN2003A 7-way (or ULN2803A 8-way) darlington driver is usually the go-to chip of choice when you need to switch any high current load from a microcontroller’s GPIO. It provides seven darlington driver stages to give low-side switching and even includes seven common-cathode clamp diodes to snub voltage spikes when high inductance loads are used. Texas instruments have recently introduced an alternative device which is said to be the industry’s first seven-channel, NMOS low-side driver chip.

The TPL7407L is a high-current NMOS transistor array. It contains seven NMOS transistors that feature high-voltage outputs also with built-in clamp diodes. The input stage is compatible with GPIO logic levels ranging from 1.8 to 5.0 V and the maximum rating of each NMOS channel is 600 mA. Several outputs can be paralleled if it is necessary to sink higher levels of load current. The TPL7407L’s key benefit is its improved power efficiency and lower leakage compared to bipolar darlington drivers.

Efficient NMOS Driver Array - [Link]

10 Jul 2014

F2x600

by Steve Taranovich @ www.edn.com:

Freescale Semiconductor introduced the MM9Z1J638, AEC-Q100 qualified intelligent battery sensors with three measurement channels, a 16/32-bit MCU and a CAN protocol module in one 7 x 7 mm 48-pin QFN package.

The market this product serves is quite diversified with 12 V lead acid batteries, 14 V Li-Ion batteries, Lead acid multi-batteries, HV battery junction box, Energy Storage Systems (ESS), Uninterrupted Power Systems (UPS) and industrial automation.

Today’s trends in the battery market include complex battery algorithms, higher communication data rates with the CAN bus, better safety for Li-Ion batteries and increased mission-critical dependence on energy availability.

Start-stop requirements, together with others such as regenerative braking and intelligent alternator control, are driving demand for more precise sensing of the battery’s state to provide early failure warnings.

Intelligent battery sensor for automotive and industrial - [Link]

30 Jun 2014

article-2014june-microcontrollers-and-fiber-fig3

By Jon Gabay  @ digikey.com:

Copper-based connectivity has served us well for a long time and will continue to do so in applications where it is effective from a performance and cost perspective. For very-high speed and/or long-distance signaling, however, the material cost and physical signal limitations of using metallic conductors has driven eyes to other transport mechanisms.

Fiber optics is not new, and the telecom industry has pushed development and deployment of fiber-optic transceivers and links so that they now span the globe. Very few of our designs have had the need to traverse long distances at such high speeds. Even fewer of us have had deep enough pockets to set up vast high-speed networks. On the other hand, engineers now are finding that local requirements are pushing the limits of metallic interconnects.

Microcontrollers and Fiber Optics - [Link]

23 Jun 2014

obr1546_1

Development tools from 8051, PIC, AVR, to ARM, displays, peripherials and virtually all for a successful development can be found in the production portfolio of company Mikroelektronika.

On the beginning there was an idea to bring on the market a user friendly environment (SW and HW) for development of applications with microcontrollers. Success and a big interest for everything, what can make development easier induced a gradual enlargement of production portfolio of company Mikroelektronika. The result is, that today company Mikroelektronika belongs to the biggest producers of development boards for the most favorite platforms like PIC, dSPIC, PIC32, AVR, STM32, Tiva C, 8051. Mikroelektronika development tools are certified as „third party tools“ or „design partner“ by many world companies like Microchip, Atmel, Texas Instruments, STM, Cypress, NXP and other.

Very interesting on the Mikroelektronika products is a comprehensive portfolio is, what means that for a given platform we´ll find software (compiler for mikroC, mikroBasic and mikroPascal), programmer, various versions of development boards, display and various peripherials. It´s worth to mention, that there are really many add-on boards available, for example: GPS, GSM, audio&video, measuring, power-supply, communication, data storage, … Some products of company Mikroelektronika also support a new graphic platform FTDI EVE. A big value for development of graphic applications are SW VisualTFT-(MIKROE-1418) and GLCD.

In our stock offer can be found for example ConnectEVE (MIKROE-1429) board with a 4,3“ display, EVEclick (MIKROE-1430), GPSClick-L10 (MIKROE-1133) and many other.

Is Microelectronics also your profession? - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits