Home Blog  





24 Jul 2014

diabetesmicrochip

By Ben Coxworth @ gizmag.com:

For people who don’t already know, here’s the difference between type 1 and type 2 diabetes: the body produces little or no insulin in the case of type 1, and isn’t able to utilize the insulin that it does produce in type 2. It’s a significant difference, so it’s important that patients are diagnosed correctly. Thanks to a new microchip developed by a team at Stanford University led by Dr. Brian Feldman, doing so could soon be quicker, cheaper and easier than ever before.

New microchip promises to streamline and simplify diabetes diagnoses - [Link]

2 Jul 2014

integrated-circuit-christies

David Szondy @ gizmag.com writes:

If it weren’t for the microchip, your smartphone would be size of a building and need its own power plant to work. Thanks to the integrated circuit and its modern incarnation in the microchip, electronics are a bit easier to carry around than that, and this week, Christie’s put one of the very first integrated circuits up for auction. Designed and constructed in 1958 by Texas Instruments, it’s one of the three earliest “chips” ever made and went on the block with an estimated value of up to US$2 million.

One of the world’s first integrated circuits goes up for auction - [Link]

28 Jun 2014

microchip

by elektor.com:

Anticipating the need for secure communications for the next level of device connectivity Microchip have integrated a complete hardware crypto engine into their PIC24F family of microcontrollers. Computers normally use software routines to carry out data encryption number crunching but for low power microcontrollers this method will generally use up too much of the processor’s resources and be too slow.

Microchip have integrated several security features into the PIC24F family of microcontrollers (identified by their ‘GB2’ suffix) to protect embedded data. The fully featured hardware crypto engine supports the AES, DES and 3DES standards to reduce software overheads, lower power consumption and enable faster throughput. A Random Number Generator is also implemented which can be used to create random keys for data encryption, decryption and authentication to provide a high level of security. For additional protection the One-Time-Programmable (OTP) key storage prevents the encryption key from being read or overwritten.

Microchip PICs with Integrated Crypto Engine - [Link]

16 May 2014

Exercise-1-prototype

Want to run Arduino code in a PIC MCU?

 Here’s an approach that enables Arduino code to be configured for execution with the Microchip Technology PIC32MX250F128B small-outline 32-bit microcontroller. It uses the Microchip Technology MPLAB X IDE and MPLAB XC32 C Compiler and the Microchip Technology Microstick II programmer/debugger.

[via]

Execute Arduino code in a PIC MCU using MPLAB IDE - [Link]


14 Apr 2014
ATmega8

ATmega8

by zeptobars.ru:

Microchips – are indeed can be considered a black box – as long as it’s working you normally don’t look inside.
But what if you want to?

Today we’ll show how to “open” chips and what’s inside.

How to «open» microchip and what’s inside? - [Link]

5 Apr 2014

Microchip-News_500

Microchip Technology Inc today announced from EE Live! and the Embedded Systems Conference in San Jose the PIC16(L)F170X and PIC16(L)F171X family of 8-bit microcontrollers (MCUs), which combine a rich set of intelligent analog and core independent peripherals, along with cost-effective pricing and eXtreme Low Power (XLP) technology. Available in 14-, 20-, 28-, and 40/44-pin packages, the 11-member PIC16F170X/171X family of MCUs integrates two Op Amps to drive analog control loops, sensor amplification and basic signal conditioning, while reducing system cost and board space. These new devices also offer built-in Zero Cross Detect (ZCD) to simplify TRIAC control and minimize the EMI caused by switching transients. Additionally, these are the first PIC16 MCUs with Peripheral Pin Select, a pin-mapping feature that gives designers the flexibility to designate the pinout of many peripheral functions. The PIC16F170X/171X are general-purpose MCUs that are ideal for a broad range of applications, such as consumer (home appliances, power tools, electric razors), portable medical (blood-pressure meters, blood-glucose meters, pedometers), LED lighting, battery charging, power supplies and motor control.

Microchip Releases 8-bit PIC Micros with Intelligent Analog and Core Independent Peripherals - [Link]

31 Aug 2013

An excellent video about How Microchips are made!

How Microchips are made - [Link]

29 Jul 2013

FZQA0IHGFMBY7JJ.LARGE

jimk3038 @ instructables.com writes:

This instructable fully describes building a PWM driver to control four LEDs from one small Microchip 12F609 board. The original design was called the “Kemper LED Lamp” and I sold a few lamps to several brave folks through my web site. However, I’ve come to discover selling small quantities to a few folks is a major pain in the backside. Hand soldering these together and then selling them at $4 bucks each is no way to make money.

Open Source Microchip LED / PWM Driver Project - [Link]

10 May 2013

20130506-pic

Microchip announces two new 8-bit PIC microcontrollers (MCUs), the PIC16F527 and PIC16F570, which combine a PIC MCU with a dual Op Amp module, an 8-bit ADC and two comparators. The new MCUs add several features to support ease of use and system robustness.

8-bit PIC Integrates Analog Circuitry - [Link]

6 Mar 2013

I2CBoard3

This tiny little breakout board has Microchip’s 24LC512 EEPROM and MCP9802 temperature sensor devices, both of which support I2C protocol. This board can be used for both sensing the ambient temperature and storing it. The MCP9802 is a digital temperature sensor with an user-selectable resolution from 9 to 12 bit. It can measure temperature ranging from -55°C to +125°C and notifies the host microcontroller when the ambient temperature exceeds a user programmed set point through its ALERT output pin. This board allows you to store up to 32000 temperature samples when you use the sensor in high resolution mode (12-bit, 0.0625°C) with each sample stored as two bytes. Raj (from embedded-lab.com) is selling this board for $9.00 on Tindie.

I2C EEPROM plus Temperature Sensor breakout board - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits | Electronics Projects