Home Blog  

30 Nov 2011

embedded-lab.com writes:

Last week I was browsing my old backup hard drive and I found a source code for a very simple PIC based digital timer that I made a couple of years ago. The actual hardware of the project isn’t with me anymore. I might have lost it when I moved from my old apartment into my new home. However, I thought this might be a good practice project for beginners and so I am sharing it here. I am not going to build it from scratch again; I will rather demonstrate it using my DIY PIC16F628A breadboard module and I/O board. The complete circuit diagram along with the firmware developed using mikroC Pro for PIC compiler is provided in the article.

00 to 99 minute timer using PIC16F628A microcontroller - [Link]

29 Nov 2011

Graphic solutions from 4D Systems are the proof, that a powerful graphic interface doesn´t have to mean big expenses and a long development time. So, give your applications the 4-th dimension!

Australian company 4D Systems, whose products we added into our offer, specialises in graphic solutions, which are very user-friendly and require a relatively small developing effort in order to reach very decent results.

Basis of 4D Systems graphic solutions represent two powerful chips – Goldelox and Picaso. Chips contain graphic processor, memory and interface for common LCD and OLED displays, and – depending on the type – also a support for a touch panel. Graphic chips and modules with these chips represent a powerful and user friendly platform for creation of graphic interface to a wide range of devices.
A common feature of both chips is, that they can be reconfigured into a slave graphic chip mode with a serial interface – SGC (slave graphics controller) – – for a work with the host microcontroller, or into a stand-alone graphic processor mode – GFX (stand alone host graphics controller). It is possible to change these chip features anytime by a simple reloading of free configuration file.

Goldelox – is a low cost chip supporting a powerful graphics, text, pictures, animations, macros and other. It can be used with a simple serial interface for a work with a microcontroller (SGC version) or as a stand-alone graphic processor (GFX version). It can work with many usual series „80“ LCD and OLED displays, with 8 bit interface. Chip can generate a sound, supports SD cards through SPI interface and many other. Read the rest of this entry »

24 Nov 2011

ColorNode » DigitalMisery.com – [via]

ColorNode is a wireless Arduino-compatible microcontroller board designed to replace the stock controller board on GE Color Effects light strings.

ColorNode was inspired by the original controller protocol reverse-engineering effort featured here: Hacking Christmas Lights. That work enabled simple control of each individual bulb of these light strings using just one pin on a microcontroller. The stock controller works nice and the patterns are good, however being able to have full control of the color and brightness of each bulb unlocks the potential for awesome holiday light displays. Hacking these lights is also relatively inexpensive, compared to using other addressable strings or light sequencers on the market.

ColorNode – OSHW LED string controllers - [Link]


23 Nov 2011

circuitvalley.com writes:

Displaying content on a normal alphanumeric display is very limited ,we have to be limited with the font size and we can’t draw any graphics also. but convention Graphics lcd are really very expensive so here is the solution, you can use Nokia 3315 monochrome LCD to display your large font text and graphics . the reason behind using this LCD is ,it is really very cheap and can be powered with 3 volts supply. so it is really good for battery powered application.

Nokia 3315 LCD interfacing with Microcontroller - [Link]

23 Nov 2011


circuitvalley.com writes:

The PICkit™ 2 Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip’s Flash families of microcontrollers. The full featured Windows programming interface supports baseline, mid-range, PIC18,8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip’s powerful MPLAB Integrated Development Environment (IDE) the PICkit 2 enables in circuit debugging on most PIC microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

Pickit 2 clone The Universal Microchip PIC Programmer / Debugger - [Link]

22 Nov 2011

jumperone.com writes:

In this video I’ll tell you what is darlington transistors, how to use them to switch medium current loads with microcontroller and what downsides they have.

Also you’ll find out about darlington arrays. Of course there would be small demonstration of controlling different loads at the end of this video.

Interfacing Microcontroller: Darlington Transistors - [Link]

21 Nov 2011

dangerousprototypes.com writes: [via]

If you’re at that stage as a beginner where you wonder what’s going on behind the scenes on an Arduino board you should check out jumperone’s tutorial on using microcontrollers. There you’ll learn what’s needed to take a bare microcontroller and load your own program onto it. Both PIC and Atmel chips are covered, with an explanation of what simple components you need to get started in addition to the chip itself, along with programming connections and hardware.

Microcontrollers for newbies - [Link]

19 Nov 2011

Normally one tact switch requires one digital input pin of a microcontroller. Some designs implement keypad style multiplexing to get multiple switches on fewer inputs. However, there exist other techniques that allow you to connect many switches on a single input pin of a microcontroller. This tutorial demonstrates one such technique as applied to PIC12F683 microcontroller. In this example, there are four LEDs and four tact switches connected to the PIC12F683 microcontroller. While each LED is controlled through an individual I/O pin, the four switches are connected to one ADC input pin of the PIC12F683 microcontroller.

Connecting multiple tact switches on a single input pin of a microcontroller - [Link]

10 Nov 2011

Microcontroller reference sheet v1.0 – [via]

Microcontroller reference sheet v1.0 - [Link]

9 Nov 2011

embedded-lab.com writes:

HD44780 based LCD displays are very popular for embedded projects because they are cheap, easy to interface, can display characters, consume power lot less than seven-segment displays, and most of the present day compilers have in-built library routines for them. However, the only disadvantage is that they require at least 6 I/O pins of microcontroller. Well, you may ask, isn’t that less than what seven-segment displays require? Yes, that’s true but there are circumstances where you don’t have left enough pins for LCD display.

Why pay for Serial LCDs when you can make your own? - [Link]





Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits