Home Blog  





29 Oct 2014

ornl-high-performance-power-inverter

by Dario Borghino @ gizmag.com:

A new power inverter developed at the Oak Ridge National Laboratory (ORNL) marries advances in 3D printing and wide-band semiconductor technology to deliver significantly improved performance in a smaller, lighter package. With further development, it could go a long way toward helping build electric cars that are more powerful and energy-efficient.

New power inverter could make EVs more powerful and efficient - [Link]

7 Oct 2014

bq21500NPR3_newx600

by Steve Taranovich @ edn.com:

A circuit or system designer’s job is a difficult one. Fraught with design compromises to be made and challenges to overcome that are sometimes seemingly insurmountable. That’s why our personalities are programmed to solve problems and “Think outside the box”. The best designers don’t even know there is a box!

I see so many new product offerings every day that “fill a hole in our line” or are simply another op amp or regulator for the portfolio among a sea of analog and power devices out there. I turn away the great majority of these so-called “new” products because my readers need innovative solutions with options that can meet their many and varied design needs. Time to market is the mantra in the industry.

Power management for wearables: Designer options - [Link]

3 Jul 2014

simple_laser_power_meter_1-600x593

Here’s a cheap and simple Laser Power Meter LPM for small power source, based on “MarioMaster LPM meter” by Davide Gironi:

This type of meter uses a ThermoElectric Cooling module (TEC) to measure the power of a laser. The TEC will absorb the laser light, and transform the heat generated by the laser beam to an electrical signal.
An operational amplifier is used then to amplify the signal and ouput it to a volt meter.
Voltage meter will display the power in W unit of the laser beam you are testing.
The TEC takes a little amount of time to heat, so wait until your reading became stable.
This type of meter is simple and cheap to build.
It can measure laser power up to 2W, with an accurancy of +-10mW.

[via]

A cheap and simple Laser Power Meter LPM for small power source  - [Link]

 

26 Jun 2014

004_PIC

This project is a solution to power up most of devices or projects requiring dual (+/-) adjustable power supply. The circuit is based on LM317 positive and LM337 negative voltage regulators. LM317 series of adjustable 3 terminal regulator is capable of supplying in excess of 1.5A over a 1.2V to 30V DC output range, due to TO3 package of IC and large heat sink the power supply can handle maximum load current.

Dual Adjustable Power Supply - [Link]


1 Jun 2014

3D_pcb_top_first

This project is based on the 0-30 VDC Stabilized Power Supply with Current Control 0.002-3 A and a new PCB layout is introduced here. It’s a stabilized power supply with variable output voltage in the range 0-30Vdc (33Vdc peak) – and variable current 3A and is ideal for your laboratory power supply.

0-30V Laboratory Power Supply - [Link]

21 May 2014

Stanford researchers, lead by electrical engineer Ada Poon, are working on midfield wireless power for medical implants, ranging in application from nerve stimulation to medication delivery. [via]

Midfield Wireless Power for Implants - [Link]

9 May 2014

legion

Organic LED, microprocessor controlled, intelligent energy source for all of your electronic devices.

Legion is a portable energy source with a built-in Organic LED display coupled with a microprocessor. It can charge any USB powered electronic devices. Unlike a traditional portable battery where you’re left in the dark about the state of charge of your battery, Legion learns how you use your electronic devices and displays precisely how much more time (day:hours:minutes) you have remaining until you run out of power. Legion uses premium grade Lithium Polymer batteries designed to maximize your energy density while packing it into the smallest area possible. Legion is proudly designed in Silicon Valley, California.

[via]

LeGion Halves Phone Charge Times – [Link]

7 Dec 2013

DIYpowerSupply

abhishek7xavier @ instructables.com writes:

Power supply is an utmost essential tool for an electronic lab. It comes in handy for powering up various applications and circuits. However a fixed voltage, fixed current power supply is sufficient for basic needs but a variable one is good to have because different circuits and components operate at different voltages and consumes different current. When it comes to an electronic hobbyist’s lab, a good power supply is must to have. Also if the power supply boosts additional features like on board voltage and current display, it comes in handy as one can know the exact voltage at the output terminals and also the current drawn by the load. But in the electronic market, those power supplies are not economic are meant for industrial purpose . Here in this article I present an economical and cost effective yet efficient variable bench power supply that is capable of providing 1.2 to 25 Volt variable supply up to 5 Ampere through one channel while 5 Volt, 1 Ampere and 12 Volt, 1 Ampere supply through other two channels thus having one variable and two fixed supply channels.

[via]

DIY Variable DC Power Supply with Display and PC interface - [Link]

28 Oct 2013

ElectronicLoad200W-600x450

Kerry Wong built a DIY constant current/constant power electronic load. It can sink more than 200W of power:

A while back I built a simple constant current electronic load using an aluminum HDD cooler case as the heatsink. While it was sufficient for a few amps’ load under low voltages, it could not handle load much higher than a few dozen watts at least not for a prolonged period of time. So this time around, I decided to build a much beefier electronic load so it could be used in more demanding situations.
One of the features a lot of commercial electronic loads has in common is the ability to sink constant power. Constant power would come in handy when measuring battery capacities (Wh) or testing power supplies for instance. To accommodate this, I decided to use an Arduino (ATmega328p) microcontroller.

[via]

Building a constant current/constant power electronic load - [Link]

12 Sep 2013

ossia-cota-technology

Wireless power. It’s less sci-fi sounding than it once was, thanks to induction charging like that based on the Qi standard, but that’s still a tech that essentially requires contact, if not incredibly close proximity. Magnetic resonance is another means to achieve wireless power, and perfect for much higher-demand applications, like charging cars. But there’s been very little work done in terms of building a solution that can power your everyday devices in a way that doesn’t require thought or changing the way we use our devices dramatically.

Cota By Ossia Aims To Drive A Wireless Power Revolution And Change How We Think About Charging - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits