Home Blog  

9 Feb 2012

(Santa Barbara, Calif.) –– A new paradigm in quantum information processing has been demonstrated by physicists at UC Santa Barbara. Their results are published in this week’s issue of Science Express online.

UCSB physicists have demonstrated a quantum integrated circuit that implements the quantum von Neumann architecture. In this architecture, a long-lived quantum random access memory can be programmed using a quantum central processing unit, all constructed on a single chip, providing the key components for a quantum version of a classical computer.

The UCSB hardware is based on superconducting quantum circuits, and must be cooled to very low temperatures to display quantum behavior. The architecture represents a new paradigm in quantum information processing, and shows that quantum large-scale-integration is within reach.

Physicists Demonstrate a Quantum Processor – Memory on a Chip - [Link]

22 Jan 2012

Seeing quantum mechanics with the naked eye – [via]

A Cambridge team have built a semiconductor chip that converts electrons into a quantum state that emits light but is large enough to see by eye. Because their quantum superfluid is simply set up by shining laser beams on the device, it can lead to practical ultrasensitive detectors. Their research is published today, 08 January in Nature Physics.

Seeing quantum mechanics with the naked eye - [Link]

22 Jan 2012

Nanoscale wires defy quantum predictions @ Nature News & Comment – [via]

Microchips could keep on getting smaller and more powerful for years to come. Research shows that wires just a few nanometres wide conduct electricity in the same way as the much larger components of existing devices, rather than being adversely affected by quantum mechanics.

As manufacturing technology improves and costs fall, the number of transistors that can be squeezed onto an integrated circuit roughly doubles every two years. This trend, known as Moore’s law, was first observed in the 1960s by Gordon Moore, the co-founder of chip manufacturer Intel, based in Santa Clara, California. But transistors have now become so small that scientists have predicted that it may not be long before their performance is compromised by unpredictable quantum effects.

Nanoscale wires defy quantum predictions - [Link]

26 Oct 2011

This video is making the round, lots of fun to watch Suspending a superconducting disc above or below a set of permanent magnets. The magnetic field is locked inside the superconductor ; a phenomenon called ‘Quantum Trapping’. [via]

QuantumLevitation - [Link]

21 Dec 2010

Spintronics memories should store quantum information on the individual atoms, rather than electrons, according to University of Utah researchers. Look for atomic scale memories that use store information of the spin-state of atoms within seven years. [via]

Spintronics aims for atomic memories – [Link]

2 May 2010

Professor Ted Sargent and his team at University of  Toronto developed a new technology of image sensor that is based on a polymer material of quantum dots which can simply be printed out. The new technology is able to replace conventional CMOS image sensors in digital cameras and has 4 times more sensitivity and is less costly. [via]

Quantum dot image sensors to replace CMOS in digital cameras - [Link]





Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits