Home Blog  





22 Jan 2015

QFN-46

With a focus on the 2.4 GHz RF application area, Holtek is delighted to announce its new I/O Type Full Speed USB Flash MCU, the BC68FB540. This device forms one of a series of new generation 8-bit Flash USB RF MCUs. The 2.4 GHz RF Transceiver includes the features of low power consumption, high performance and high noise immunity characteristics and has a data rate of up to 2 MBPS.

The BC68FB540 is compatible with the USB 2.0 specification and has an operating voltage of 2.2 V to 5.5 V, and with an operating temperature of –40 °C to +85 °C it meets with industrial specifications. The RF circuitry derives its system clock from an externally connected 16 MHz crystal while the MCU system clock is derived from a fully internal 12 MHz HIRC oscillator.

Holtek New BC68FB540 2.4GHz Full Speed USB Flash Type RF TRX MCU - [Link]

13 Jan 2015

nfc_board_m

Limpkin wrote this blog article about his tiny NFC Reader with a TRF7970A build, and he will be giving a few of them away:

The main components are:
– the USB-enabled ATMega32U4
– a connector for the NRF24L01
– a Lithium-Ion battery charger
– an NFC transceiver
– a proximity sensor
The main idea of this platform is to read NFC tags while keeping its power consumption low. The microcontroller is communicating with the NFC transceiver so you can use the platform as a standalone device or computer peripheral.
You could therefore control a switch (using the expansion header), send the tag data via RF (using a NRF24L01 you’d connect) or simply have the ATMega32U4 forward the read/write commands sent from your computer. The original idea was to support libnfc.

Tiny NFC reader with a TRF7970A - [Link]

4 Dec 2014

thumb.ready

by hforsten.com:

I’ve for some time now wanted to do more RF design. Although I have taken some RF design courses, I haven’t actually made a single RF design before. But you can’t learn without doing and inspired by the MIT coffee can radar designed by Gregory Charvat, I figured that building a radar should be a doable project that would offer some challenge while also having some real world use.

The simplest radar is a continuous wave Doppler radar, which continuously transmit a constant frequency signal. This signal reflects from a moving target and Doppler shift causes reflected signal to change frequency. This reflected signal is then received and mixed with the transmitted signal. Mixer product is the difference of the frequencies which is proportional to the speed of the target. This kind of radar is very simple to make, in fact there are even some children’s toys. Unfortunately it can’t detect the range of the target and isn’t that exiting.

6 GHz frequency modulated radar - [Link]

14 Nov 2014

rf-wave-circulator

by Colin Jeffrey @ gizmag.com:

In the world of electronic components, there are many devices out there that do their job well and reliably, but are almost never heard of – even though they may be vital to equipment that plays a role in our technology-driven lives. The radio frequency (RF) circulator is just such a device: it has simply done its job as a nondescript box of gubbins buried in radio communications systems, quietly directing radio frequency signals to the places they should go. Now researchers at the University of Texas have given the RF circulator a makeover. Not only is the new prototype smaller, lighter, and cheaper, it’s also claimed to be easily adapted to different frequencies on the fly, which is something the old style circulator cannot do.

New RF circulator to run rings around old technology - [Link]


10 Nov 2014

rftoy_annotated-1024x543

RaysHobby build a project called RFToy:

it’s an Arduino-compatible microcontroller board for interfacing with radio frequency (RF) modules, such as the popular 433/315MHz transmitter/receiver, and the nRF24L01 transceiver. The RFToy has a built-in ATmega328, USB-serial converter (CH340G), 128×64 OLED display, three buttons, and a coin battery holder. Programming is done in Arduino through the on-board mini-USB port. It has three sets of pin headers to directly fit RF modules, and an audio jack to output RF receiver signals to a computer’s sound card. Using RFToy you can build a variety of projects involving RF modules, such as remote control and wireless sensors.

[via]

Introducing RFToy, an Arduino-compatible gadget for radio frequency modules - [Link]

3 Nov 2014

article-2014october-mems-oscillators-challenge-fig2

by Bill Schweber @ digikey.com:

With very few exceptions, every electronic circuit needs an oscillator, also referred to as a clock, clock generator, or timing circuit. Its role is to provide the “heartbeat” for the processor, memory functions, communications ports, A/D and D/A converters (if any) and many other functions. In non-critical, low-budget situations such as $10 mass-market electronic thermometers, this clock may be made from a simple resistor/capacitor (RC) oscillator. However, for the vast majority of situations which are more critical, the oscillator is based on a quartz crystal (Figure 1). This is a mature (80+ years) and highly effective technology which can support of wide range of frequencies from kHz to hundreds of MHz, with performance spanning fairly good to excellent, depending on the crystal cut, fabrication, packaging, and other considerations.

MEMS Oscillators Challenge Quartz Crystals in RF Applications - [Link]

13 Oct 2014

arduino-rf-receiver-and-relay-shield

by electro-labs.com:

You are planning to use Arduino in your project but you need some kind of remote control functionality. A standalone Arduino won’t provide what you need but this DIY shield may be a good solution for you. It includes a 433.92Mhz RF receiver which lets you send commands to Arduino wirelessly and four SPDT relays which can be used for switching purposes.

Each relay is capable of switching up to 10A @ 250VAC so they can be used to control mains powered devices. There are four LEDS indicating the status of the relays. The terminal blocks on the shield lets you easily connect the devices you will control.

The RF receiver is a module that can be found in the market easily. It is directly soldered to the shield and runs at 4800bps. The board has an antenna input which lets you solder your custom antenna to increase the wireless range.

DIY 433MHz RF Receiver and 4 x SPDT Relay Shield - [Link]

23 Sep 2014

example__86477.1409204603.1280.1280by shop.ciseco.co.uk:

The Wireless Inventors Kit for the Raspberry Pi (RasWIK) is an exciting and affordable addition to the Raspberry Pi. RasWIK demonstrates that with our leading edge technology anyone (and we mean anyone) can build wireless sensors and actuators , you do not need huge experience, a degree or even any tools. We show you even how to connect the devices you build to “the Internet of Things” (IoT) service providers such as Xively.

Getting started is just 5 simple steps:
1. Insert the preconfigured SD card to your Pi
2. Plug in the Slice of Radio to the GPIO connector
3. Turn on the Pi
4. Power the XinoRF development board
5. Lauch the Python based example application on your Pi
Thats it!……..you are now past step one of your journey to wireless nirvana :)

RasWIK – Raspberry Pi Wireless Inventors Kit - [Link]

22 Sep 2014

Viterbi

by elektor.com:

A press release from the University of Southern California describes a novel transmission technique which can achieve very high data rates. The research led by Alan Willner of the USC Viterbi School of Engineering does not use a single carrier to send information but instead combines independent radio beams using a ‘spiral phase plate’ that twists each radio beam into a unique and orthogonal DNA-like helical shape. The receiver untwists the beams and recovers the different data streams. “Not only is this a way to transmit multiple spatially collocated radio data streams through a single aperture, it is also one of the fastest data transmission via radio waves that has been demonstrated,” Willner said.

Twisted RF beams achieve 32 GB/s - [Link]

22 Sep 2014

pca964bbheader-600x145

Ondřej Karas of DoItWireless writes:

 If You are interested in LED driving through RF, this article would be interesting for you. I tested own PCA9634 breakout board for this chip and wrote simple low level driver for IQRF TR-52D module. Next week, I am going to publish PC application for comfortable operation with that.

[via]

Wireless LED driver with PCA9634 - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits