Home Blog  





2 Apr 2008

macetech.com writes:

ShiftBrite is a simple device I am designing and producing. It allows easy control of a bright RGB LED. The interface is a straightforward clocked serial data line and a latch input. All signals are buffered and passed through for good performance over long cables and daisy chaining many devices. Many ShiftBrite devices can be controlled from any type of controller that supports clocked serial data output, which is practically all microcontrollers and even PC parallel port or FTDI bitbang adapters.

ShiftBrite RGB Led - [Link]

2 Apr 2008

macetech.com writes:

This project is an array of LEDs, sized to fit an alcove in my apartment living room, about 35 inches wide by 58 inches tall. The LEDs will be RGB, with fullcolor pixels arranged 16 wide by 24 tall. Each pixel will be 2 1/8 inches square. There are a total of 384 pixels, and 1152 individually controlled LEDs. The array will be used to display informational graphics, audio visualizations, and tunable ambient lighting.

16×24 RGB LED Array - [Link]

5 Mar 2008

picaxe-blending-nightlight.jpg

Chipwich writes -

“I had a few multicolor LEDs laying around and wanted to whip up a color-blending nightlight. I built 2 devices, each in its own 20 pin DIP socket without soldering. A 3-pin header is included so I can reprogram the light on-the-fly if desired. On my first build, I used wire-wrap. The next one used multiple wires pushed into the socket. A bit more difficult, but no wire-wrapping or soldering necessary.” -

Picaxe Blending Nightlight - [Link]

3 Mar 2008

the-cubatron.jpg

The Cubatron was the world’s largest true 3D color graphics display from 2004-2006 (now overtaken by the Big Round Cubatron). It is 8×8×8 feet in size. It consists of 729 voxels (3D pixels) arranged in a 9×9×9 matrix, spaced 10 inches apart from each other. Each voxel is a 40mm diameter ball that can be independently set to display a 21-bit RGB color. The entire display can be updated about 30 times per second. The voxels “float” in space so that the viewer can see through the cube and have a view of most of the voxels from any position.The voxel driver board has a PIC18F452 which demuxes the incoming data and sends it out to the 27 voxel strings while maintaining proper timing for the synchronous protocol. Each voxel has an RGB LED on it that is controlled by a PIC12F629 microcontroller.

The Cubatron - [Link]


1 Mar 2008



 

Cool visualization on a monitor via Arduino

An arduino board is controlling the RGB lines of a VGA connection to an LCD monitor. However, the horizontal and vertical sync lines are being generated by a proper computer. [via]

Hacking VGA with Arduino - [Link]

27 Feb 2008

 control-color-led.png

Features:Infrared remote control ,Serial port for computer control ,Ability to press the top of the lamp to turn it on/off or change modes (not in prototype),The color can be independently controlled at each corner ,Smooth, beautiful color transitions

Control Color LED - [Link]

22 Feb 2008

ping_pong_led-thumb.jpg

Turns out that a Ping Pong ball makes a reasonable LED diffuser. Just drill a hole and insert the LED. Easy micro Locnar! With an RBG LED this could make a nice system indicator. Maybe build a strip of these indicators to make several status indicators. Each server gets a mini orb to show it’s online status, maybe each email account. How about a ball of balls, each with an RGB LED… [via]

Ping Pong Ball LED Diffuser - [Link]

14 Feb 2008

led_assembly.JPG

daqq.eu writes:

I wanted to play with a simple RGB LED, to see how colors would mix, change and stuff. So I build my own LED and “controller”. It fades in and out a set of 9 LEDs (3 RGB LEDs) into random values. [via]

Yet Another LED Blinkie project - [Link]

14 Feb 2008

rgb_led.jpg

Rob sent in the latest gadget freak, he writes -

Seeing great potential in a normal, off-the-shelf product, Pete Griffiths designed a circuit he popped into the lamp to give it a new lease of life. His design combines a PIC and three constant current buck converters to create the RGB LED controller. This controller drives the high power 350mA LEDs using PWM to control the LED brightness. By driving the red, green and blue LEDs with varying pulse widths the controller can generate up to 16 million colours using fades, strobe and static effects. Who says you can’t give the humble lamp a nip and tuck? [via]

RGB LED PWM Driver for High Power 350mA LEDs - [Link]

8 Feb 2008

fgbcosu97qex50.jpg

Control the colour of a powerful LED light beam with a remote control, store the colours and recall them at will.  With this thing I can control the colour of a bright light into many different colours using the three fundamentals colours : red green and blue. Adding them toghether with different intensity can yeld very great a range of colours from the visible spectrum. Specifically my mood lamp can shift colours through 32 intensity values for each RGB colour giving 32*32*32 = 32768 different combinations of hue, intensity and brightness. It can also store 10 different combinations can be turned on or off, all of these through a TV remote control. The intensity of each red, green and blue component is done via PWM so heat dissipation is kept to a minimum. The circuit is simple and there are no pushbuttons as control is done entirely through the remote control.

Remote controlled RGB LED mood light - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits