Home Blog  





28 Jul 2014

obr1562_1

Miniature calibrated humidity and temperature sensor Sensirion SHTC1 is usable even in space – limited applications.

Really miniature dimensions and a low price are main benefits of new calibrated sensors SHTC1 from production of company Sensirion. If you ever tried well known sensors series SHT2x, probably you´ve been surprised by their small dimensions (3,2×3,2x2mm). However the new sensor SHTC1 shifts dimensions a level further, or better said – lower. The result is a DFN package with dimensions of only 2x2x0.75mm, what in praxis represents a package, which you may not notice at a cursory look at a populated PCB. That´s why the SHTC1 is primarily intended for mobile applications and everywhere, where a spared space and a minimal power consumption are beneficial.

Taking a low price in mind, the guaranteed accuracy of SHTC1 chip is relatively excellent, roughly on a level of SHT21. Typical accuracy of ±3% in a range of 20-80% RH and ±0.3°C is probably fully sufficient for majority of applications. 1.8 V supply voltage and ultra low power consumption below 1uJ/measurement are ideal for battery powered devices. SHTC1 supports I2C fast mode (0-400 kHz). This small package practically can´t be soldered by hand, but it is relatively easily possible by means of a solder paste and a hot-air soldering station.

Also the SHTC1 is produced by a well proven CMOSens technology, which proves its reliability and a long-term stability in industry. Similarly, the SHTC1 also isn´t only a “sensor” but a ready-made calibrated solution containing 2x sensor, low-noise amplifier, A/D interface, data processing unit with calibration data in a ROM and a communication interface. Detailed information can be found in the Sensirion SHTC1 datasheet and the Sensirion Humidity flyer.  

We´ve got samples ready for you!
If you´re interested in trying this perspective sensor, take part in a contest below the article, or contact us on a well known address info@soselectronic.com.

SHTC1 we keep so far as an item upon order, but we´re able to supply it to you in a short leadtime and soon it will be a standard stock item.

SHTC1 – humidity and temperature from a pin head - [Link]

28 Jul 2014

NewImage233

Ray has a great reverse engineering project! Check out more on his blog rayshobby.net. [via]

At the Maker Faire this year I got lots of questions about soil moisture sensors, which I knew little about. So I started seriously researching the subject. I found a few different soil sensors, learned about their principles, and also learned about how to make my own. In this blog post, I will talk about a cheap wireless soil moisture sensor I found on Amazon.com for about $10, and how to use an Arduino or Raspberry Pi to decode the signal from the sensor, so you can use it directly in your own garden projects.

What is this?

A soil moisture sensor (or meter) measures the water content in soil. With it, you can easily tell when the soil needs more water or when it’s over-watered. The simplest soil sensor doesn’t even need battery. For example, this Rapitest Soil Meter, which I bought a few years ago, consists of simply a probe and a volt meter panel. The way it works is by using the Galvanic cell principle — essentially how a lemon battery or potato battery works. The probe is made of two electrodes of different metals. In the left picture below, the tip (dark silver color) is made of one type of metal (likely zinc), and the rest of the probe is made of another type of metal (likely copper, steel, or aluminum). When the probe is inserted into soil, it generates a small amount of voltage (typically a few hundred milli-volts to a couple of volts). The more water in the soil, the higher the generated voltage. This meter is pretty easy to use manually; but to automate the reading you need a microcontroller to read the value.

Reverse engineer a cheap wireless soil moisture sensor using Arduino or Raspberry Pi - [Link]

23 Jul 2014

FPMK9S8HXXHIQSM.MEDIUM

by MakerSpark Industries @ instructables.com:

This Instructable is about how to create an Arduino PIR motion sensor for your room or office, using parts available from your local Radio Shack! Whether you’re looking for a cool and easy-to-build security sensor, or an awesome first project to dive into the world of Arduino, Microcontrollers, and electronics, this project is for you. (This project really is easy. Take it from me, I’m 12, and I’ve only had my Arduino for a week and a half.)

Arduino PIR Motion Sensor - [Link]

10 Jul 2014

F2x600

by Steve Taranovich @ www.edn.com:

Freescale Semiconductor introduced the MM9Z1J638, AEC-Q100 qualified intelligent battery sensors with three measurement channels, a 16/32-bit MCU and a CAN protocol module in one 7 x 7 mm 48-pin QFN package.

The market this product serves is quite diversified with 12 V lead acid batteries, 14 V Li-Ion batteries, Lead acid multi-batteries, HV battery junction box, Energy Storage Systems (ESS), Uninterrupted Power Systems (UPS) and industrial automation.

Today’s trends in the battery market include complex battery algorithms, higher communication data rates with the CAN bus, better safety for Li-Ion batteries and increased mission-critical dependence on energy availability.

Start-stop requirements, together with others such as regenerative braking and intelligent alternator control, are driving demand for more precise sensing of the battery’s state to provide early failure warnings.

Intelligent battery sensor for automotive and industrial - [Link]


8 Jul 2014

doit-011-600x305

Ondrej Karas of DoItWireless writes:

This article describes temperature and humidity measurement with DHT11 sensor connected to TR module. Circuit diagram is very simple. You need only power supply for sensor and one wire for data line. This line has to be “pull-uped” – sensor has open collector output.

Temperature and humidity measurement with DHT11 - [Link]

25 Jun 2014

IMG_0720Connor @ narkidae.com

I recently stumbled across an interesting fact in the datasheet for the ATMEGA32u4, the microcontroller I am using for my Einstepper Project. I was surprised to find that Atmel had included a temperature sensor in the core of the device that you can read using the internal ADC. As it turns out, there are many megaAVR devices contain an internal temperature sensor. According to Atmel’s product finder, these devices are:

ATMEGA Core Temperature Sensor - [Link]

16 Jun 2014

sonyinspired

by Nancy Owano @ phys.org:

Sony’s advance in image sensors appears quite natural: the company has developed a set of curved CMOS image sensors based on the curvature of the eye. A report on the sensors in IEEE Spectrum said that, “in a bit of biomimicry,” Sony engineers were able to achieve a set of curved CMOS image sensors using a “bending machine” of their own construction.

Sony inspired by biomimicry develops curved CMOS sensors - [Link]

16 Jun 2014

FE5SQ7MHWDRDSBB.MEDIUM

by brmarcum @ instructables.com:

I hate Christmas tree lights.

Well not really, I just don’t enjoy having to climb under the tree every time I want to plug in or unplug the lights. In the interest of saving my sanity, I decided to build a motion activated switch that can power the lights for me. It has an integrated adjustable timer so they will stay on for as long or as short as I want. Here’s a video showing the final test on the fish tank light.

Motion Activated AC Switch - [Link]

26 May 2014

od_2660_1_1400675056

Shabaz over at Element14 writes:

This post is about an interesting, low-cost sensor that doesn’t need much processing to use, and has some unique characteristics – a PVDF (polyvinylidene difluoride) Piezoelectric sensor. The sensors looks like a small strip of plastic, and can be used for detecting movement or vibrations even into ultrasound. Such devices can help sense in many practical, real-world scenarios. They are extremely sensitive, low cost and easy to use. Some simple practical experiments with these sensors are described, finally looking at detecting ultrasound.

[via]

Impact, vibration and ultrasound sensing with PVDF Piezo sensors - [Link]

24 May 2014

article-2014may-sniffing-the-air-fig2

By European Editors

Air pollutants such as particles and noxious gases are known to be harmful to human health. In industry, on the other hand, high concentrations of gases such as methane or propane, or carbon monoxide resulting from poor combustion processes, can present an immediate safety risk. To overcome these problems, a wide range of groups such as homeowners, operators of commercial buildings or industrial sites, city councils, and environmental agencies need access to equipment for monitoring air quality and detecting the presence of various gases.

Sniffing the Air: Sensors for Monitoring Air Quality and Safety - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits