Home Blog  

12 Apr 2014

FL2JC9LHTQN6B61.MEDIUMdeba168 @ instructables.com writes:

A solar charge controller regulates the voltage and current coming from your solar panels which is placed between a solar panel and a battery .It is used to maintain the proper charging voltage on the batteries. As the input voltage from the solar panel rises, the charge controller regulates the charge to the batteries preventing any over charging.

Arduino Solar Charge Controller (PWM) - [Link]

28 Mar 2014


The organic solar film producer Heliatek based in Dresden, Germany have announced an improved type of solar cell which gives a transparency of 40 % while achieving 7 % energy conversion efficiency. Although its efficiency is not as good as the company’s opaque organic cells (roughly 12 %) this new solar film can be discreetly integrated into building and vehicular glazing to provide an energy harvesting tinted transparent film. The film is also effective at low light levels and high temperatures where conventional cells lose out.

HeliaFilm uses small molecules (oligomers), developed and synthesized at Heliatek. Oligomers are deposited at low temperatures in a roll-to-roll vacuum process and by changing the spectral absorption properties of the molecules the film can provide different levels of transparency and a colored tint. According to Thibaud Le Séguillon, Heliatek CEO “The transparency of our products is at the core of our market approach. Our HeliaFilm™ is customized to meet our partners’ specific needs, we are a component supplier and this component is a film which can combine transparency and energy generation. This unique combination widens our market potential.”

Organic Solar Film adds Tint and Power - [Link]

28 Feb 2014


Startup company Aquion Energy gave MIT Technology Review a behind-the-scenes look at their battery manufacturing process. The company’s goal is to make non-toxic, cheap batteries for storing off-grid energy. The batteries will first be sold in regions that don’t have access to an electrical grid, such as rural areas and villages in poor countries.

How to Make a Cheap Battery for Storing Solar Power - [Link]

5 Dec 2013


by Publitek European Editors:

Monitoring is the key to unlocking the energy production of the solar cell. It is easy to lose efficiency through the use of circuit architectures that assume constant energy production when the solar environment is constantly changing.

The change in current-voltage properties as a solar module heats up or receives more light can be an important source of efficiency losses in solar arrays. If the inverter that generates grid-compatible electricity is not tuned to the output voltage and current conditions, it will waste more of the electricity than it should. In response, electronics companies have produced ICs that perform the maximum power-point tracking (MPPT) needed to optimize energy conversion as well as bypass electronics to prevent temporarily unproductive modules from disrupting the output of active cells.

Maximizing the Output from Solar Modules - [Link]

15 Nov 2013


Researchers Steve Dunn at Queen Mary University and James Durrant at Imperial College London have been experimenting with a new design of thin, flexible solar cell made from zinc oxide. Manufacturing costs of the new cells will be significantly lower than conventional silicon based technology. The only disadvantage is their poor efficiency; just 1.2 %, a fraction of that achievable with silicon.

The material also exhibits piezo-electric properties, nanoscale rods of the material generate electricity when they are subjected to mechanical stresses produced by sound wave pressure. Sound levels as low as 75dB, equivalent to that from an office printer, were shown to improve efficiency. Durrant said “The key for us was that certain frequencies increased the solar cell output, we tried our initial tests with various types of music including pop, rock and classical”. Rock and pop were found to be the most effective. Using a signal generator to produce sounds similar to ambient noise they saw a 50 % increase in efficiency, rising from 1.2 % without sound to 1.8 % with sound.

New Solar Cell Shows a Preference for AC/DC - [Link]

21 Oct 2013

Julian Ilett demonstrates his Arduino Solar Charge Controller. He has mounted all of his Arduino modules to a piece of wood to keep everything nice and neat. [via]

“High efficiency values (96% – 97%) are achievable when the buck converter is stepping down from 18v to 12v. With a 72-cell panel and the converter stepping 35v down to 12v, the efficiency drops to around 88%.”

Arduino Solar Charge Controller - [Link]

30 Sep 2013


A team comprised of the Fraunhofer Institute for Solar Energy Systems, Soitec, CEA-Leti and the Helmholtz Center, Berlin has just unveiled the world’s most efficient solar cell! Boasting an efficiency of 44.7%, the cell breaks the record set by Sharp just three months ago by 0.3%. The four-junction photovoltaic cell is not only dramatically more efficient than the theoretical 33.7% efficiency limit of conventional silicon-based solar PV, but it puts the team well on the road to reaching their goal of 50% efficiency by 2015.

German-French Team Unveils World’s Most Efficient Solar Cell! - [Link]

20 Jun 2013


Bill Schweber writes:

The power-management IC (PMIC) supports and manages the transducer and energy-collection channel, the energy-storage element (battery, conventional capacitor or supercapacitor), and the processor/wireless link. This critical block of any energy-harvesting design implements several major functions: Captures and extracts the random, miniscule energy from the source transducer, Transforms that extracted power into energy for the storage element, usually via a DC/DC converter, Manages the outflow of power from the storage element, while ensuring that power is not drawn when the stored energy is below a threshold value and would be wasted, Perhaps most challenging, it has to manage its own start-up sequence in the transition from when there is insufficient available stored energy for the PMIC itself.

Choosing a Power Management IC for Energy-Harvesting Applications - [Link]

14 Jun 2013


Here is an app note from Microchip describing the design of a solar power DC-DC converter.

The focus of this application note is to identify how to get the maximum power out of a solar panel to power a remote application.


App note: Solar power DC-DC converter - [Link]

21 May 2013


An application note from Microchip: Practical guide to implementing Solar Panel MPPT Algorithms (PDF!)

This application note describes how to implement MPPT using the most popular switching power supply topologies. There are many published works on this topic, but only a tiny portion of them show how to actually implement the algorithms in hardware, as well as state common problems and pitfalls. Even when using the simplest MPPT algorithm with a well-designed synchronous switching power supply, it can be expected that at least 90% of the panel’s available power will end up in the battery, so the benefits are obvious.


Practical guide to implementing Solar Panel MPPT Algorithms - [Link]





Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits