Home Blog  





17 Feb 2015

FVMT7GHI64XG12A.LARGE

by deba168 @ instructables.com:

Welcome to my solar charge controller tutorials series.I have posted two version of my PWM charge controller.If you are new to this please refer my earlier tutorial for understanding the basics of charge controller.

This instructable will cover a project build for a Arduino based Solar MPPT charge controller.

Now a days the most advance solar charge controller available in the market is Maximum Power Point Tracking (MPPT).The MPPT controller is more sophisticated and more expensive.It has several advantages over the earlier charge controller.It is 30 to 40 % more efficient at low temperature.

But making a MPPT charge controller is little bit complex in compare to PWM charge controller.It require some basic knowledge of power electronics. I put a lot of effort to make it simple, so that any one can understand it easily.If you are aware about the basics of MPPT charge controller then skip the first few steps.

Arduino MPPT Solar Charge Controller v3 - [Link]

6 Feb 2015

rcj_Brookhaven_Solar_PV

Photovoltaic cells output boosted with carbon. R. Colin Johnson @ eetimes.com:

PORTLAND, Ore. — Scientists have demonstrated a doubling of the number of electrons produced by carbon-based photovoltaic polymer potentially doubling the efficiency of any solar cell. The process called “singlet fission” produces “identical twin” electrons from a single photon, instead of the normal one, dramatically boosting the theoretical maximum output of solar cells. Instead of loosing energy to heat, an extra electron is produced by the process of applying a polymer solution to an existing solar cell.

“One of the challenges in improving the efficiency of solar cells is that a portion of the absorbed light energy is lost as heat,” lead scientist at Brookhaven National Labs, Matt Sfeir, told EE Times. “In singlet fission, one absorbed unit of light results in two units of electricity via a multiplication process rather than resulting in one unit of electricity and heat as would occur in a conventional cell.”

Print-On Polymer Multiplies Solar Output - [Link]

30 Jan 2015

article-2015january-integrated-mcus-enable-cost-fig1

by Stephen Evanczuk @ digikey.com:

Microinverters provide an effective solution to solar-energy harvesting by providing power conversion at the individual panel level. The emergence of highly integrated MCUs offers an attractive approach to microinverter design, providing an option that reduces the cost of complexity which limited widespread adoption of microinverters in the past. Today, designers can build highly efficient microinverter designs using available MCUs from semiconductor manufacturers including Freescale Semiconductor, Infineon Technologies, Microchip Technology, Spansion, and Texas Instruments, among others.

Solar-energy-harvesting systems have continued to evolve away from traditional centralized solutions (Figure 1). Unlike systems based on a single central inverter or even multiple string inverters, microinverters convert power from a single panel. In turn, the AC power generated by microinverters on each panel is combined on the output to the load.

Integrated MCUs Enable Cost-Effective Microinverters for Solar Energy Designs - [Link]

13 Jan 2015

Solar Impulse plane set to circle world using renewable energy via euronews

A plane powered by the sun, the Solar Impulse 2, has left Switzerland in a cargo flight bound for Abu Dhabi.

Once there, it will attempt a flight around the world, over India and China, taking in Hawaii and the rest of the US before crossing the Atlantic to southern Europe, northern Africa and completing the circle back to the UAE.

“We would like to demonstrate, with Solar Impulse, that we can today achieve incredible things with renewable energies and clean technologies,” explained Dr. Bertrand Piccard, founder of the Solar Impulse project.

“If an aeroplane can fly with no fuel around the world, can you imagine how this technologies could be used everywhere? We have today solutions, technical solutions, to divide by two the energy consumption of the world, and simultaneously create jobs and make profit for the industry,” added Piccard.

Solar Powered Plane Set To Fly Around The World - [Link]

 


23 Dec 2014


Colloidal quantum dots can be sprayed on nearly any surface to turn it into a solar cell according to an IBM backed laboratory in Candada and the University of Toronto: R. Colin Johnson @NetGenLog

Quantum Dots Enable Spray on Solar Cells - [Link]

3 Dec 2014

aa70f6e393a550609dc0743ed6fc56b0_large

Fully Assembled Solar Cell Controller Board and Sun Tracker for Arduinos /Raspberry Pi / Phone Charging. Plus Open Source Drivers.

Ever wanted to build your own Solar Powered Raspberry Pi or Arduino system? That is what this Kickstarter is all about!! SunAir and SunAirPlus are 3rd Generation Solar Charging and Sun Tracking Boards designed by Dr. John C. Shovic at SwitchDoc Labs.

You can use this board to power your projects and add a servo or stepper motor to allow it to track the sun using photoresistors to generate even more power! It incorporates a number of outstanding features in a very compact, inexpensive single fully assembled and tested PC Board.

SunAir Solar Power Controller Board/Tracker/Phone Charger - [Link]

7 Nov 2014

FL0954NHHTE0PGU.MEDIUM

by MidnightMaker @ instructables.com:

This is a Solar Tracker. A full size, internet cloud connected, smartphone accessible Solar Tracker built mainly from 2x4s and plywood, employing wooden peg gears, recycled curtain poles, nuts, bolts and threaded rod. The solar tracker uses a home built electronic controller incorporating WiFi, stepper motor drives, accelerometer and magnetometer. The tracker was designed to drive a full size 90W panel in azimuth and elevation. The gears driving the tracker are wooden peg gears commonly used in the 16th century. The gears were designed using modern 3D CAD (Solidworks). Connecting the wooden peg gears to the internet cloud just seemed like the right thing to do. This is not a waterproof design – you will need to consider modifications to waterproof your derivative design.

Solar Tracker in the Internet Cloud - [Link]

6 Nov 2014

NewImage242

New solar power material converts 90 percent of captured light into heat via phys.org

A multidisciplinary engineering team at the University of California, San Diego developed a new nanoparticle-based material for concentrating solar power plants designed to absorb and convert to heat more than 90 percent of the sunlight it captures. The new material can also withstand temperatures greater than 700 degrees Celsius and survive many years outdoors in spite of exposure to air and humidity. Their work, funded by the U.S. Department of Energy’s SunShot program, was published recently in two separate articles in the journal Nano Energy.

New solar power material converts 90 percent of captured light into heat - [Link]

27 Oct 2014

solarcontroller

by deba168 @ instructables.com:

One year ago, I began building my own solar system to provide power for my village house.Initially I made a LM317 based charge controller and an Energy meter for monitoring the system.Finally I made PWM charge controller.In April-2014 I posted my PWM solar charge controller designs on the web,it became very popular. Lots of people all over the world have built their own. So many students have made it for their college project by taking help from me.I got several mails every day from people with questions regarding hardware and software modification for different rated solar panel and battery. A very large percentage of the emails are regarding the modification of charge controller for a 12Volt solar system.

Arduino solar charge controller and energy monitor - [Link]

23 Oct 2014

article-2014october-power-conversion-options-fig1

by digikey.com:

Environmental energy harvesting is a possible source of power for Internet of Things (IoT) sensor nodes but needs careful management. Unless harvesters based on solar or thermal technology, for example, are designed to be compatible with conventional circuits, DC/DC converters need to be optimized for low-voltage inputs.

Sensor nodes for the Internet of Things often need to placed well away from a reliable power source but operate for many years. Although long storage-life batteries provide one option for powering these devices, an increasingly viable alternative is the use of environmental energy harvesting, using sources such as light, vibration and temperature differentials.

Power Conversion Options for Energy Harvesting IoT Nodes - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits