Home Blog  





12 May 2014

weatherstn_station

Raj @ embedded-lab.com writes:

This instructable describes in detail the setting up a full-featured weather station that records air temperature, relative humidity, and ground surface temperature right below the weather station. The project uses Phidgets SBC3 computer board, which is powered by an 18-watt solar power along with a battery backup.

PhidgetSBC3 based solar-powered weather station - [Link]

28 Apr 2014

LT8490_preview2

by mictronics.de:

In December 2013 Linear Technology announced a new chip – LT8490. This chip includes a 80V Buck-Boost Lead Acid & Lithium Battery Charging Controller that actively finds true Maximum Power Point in solar applications.

No yet available, that chip looks very promising. It operates with input voltages down to 6V and can boost that to charge batteries with higher voltage. I made already a schematic and board design from the preliminary datasheet that charges a 3S LiPo from a solar panel with up to 5A. A small board size allows usage in model gliders with large wing span to charge the battery in flight.

Solar charger with MPPT - [Link]

27 Apr 2014

image002

Heinz Pieren writes:

ArdaSol is the project name for my solar energy and Arduino based monitoring system. This description shows how the system is built and how it works. The energy production of a photovoltaic plant is monitored and also the consumption or feeding to grid of the energy. Data acquisition during a solar day and publishing on the internet is also a function of this system.

ArdaSol – Photovoltaic Energy Monitoring System - [Link]

25 Apr 2014

MPPT_stacked

by mictronics.de:

Maximum power point tracking (MPPT) is a technique that solar battery chargers and similar devices use to get the maximum possible power from one or more solar panels (several solar cells connected in series and parallel). Solar cells have a complex relationship between solar irradiation, temperature and total resistance that produces a non-linear output efficiency known as the I-V curve. It is the purpose of the MPPT system to sample the output of the cells and apply the proper load to obtain maximum power for any given environmental conditions.

Solar Cell MPPT - [Link]


12 Apr 2014

FL2JC9LHTQN6B61.MEDIUMdeba168 @ instructables.com writes:

A solar charge controller regulates the voltage and current coming from your solar panels which is placed between a solar panel and a battery .It is used to maintain the proper charging voltage on the batteries. As the input voltage from the solar panel rises, the charge controller regulates the charge to the batteries preventing any over charging.

Arduino Solar Charge Controller (PWM) - [Link]

28 Mar 2014

Heliatek

The organic solar film producer Heliatek based in Dresden, Germany have announced an improved type of solar cell which gives a transparency of 40 % while achieving 7 % energy conversion efficiency. Although its efficiency is not as good as the company’s opaque organic cells (roughly 12 %) this new solar film can be discreetly integrated into building and vehicular glazing to provide an energy harvesting tinted transparent film. The film is also effective at low light levels and high temperatures where conventional cells lose out.

HeliaFilm uses small molecules (oligomers), developed and synthesized at Heliatek. Oligomers are deposited at low temperatures in a roll-to-roll vacuum process and by changing the spectral absorption properties of the molecules the film can provide different levels of transparency and a colored tint. According to Thibaud Le Séguillon, Heliatek CEO “The transparency of our products is at the core of our market approach. Our HeliaFilm™ is customized to meet our partners’ specific needs, we are a component supplier and this component is a film which can combine transparency and energy generation. This unique combination widens our market potential.”

Organic Solar Film adds Tint and Power - [Link]

28 Feb 2014

acquion.demo_.10x948

Startup company Aquion Energy gave MIT Technology Review a behind-the-scenes look at their battery manufacturing process. The company’s goal is to make non-toxic, cheap batteries for storing off-grid energy. The batteries will first be sold in regions that don’t have access to an electrical grid, such as rural areas and villages in poor countries.

How to Make a Cheap Battery for Storing Solar Power - [Link]

5 Dec 2013

article-2013november-maximizing-output-solar-modules-fig3

by Publitek European Editors:

Monitoring is the key to unlocking the energy production of the solar cell. It is easy to lose efficiency through the use of circuit architectures that assume constant energy production when the solar environment is constantly changing.

The change in current-voltage properties as a solar module heats up or receives more light can be an important source of efficiency losses in solar arrays. If the inverter that generates grid-compatible electricity is not tuned to the output voltage and current conditions, it will waste more of the electricity than it should. In response, electronics companies have produced ICs that perform the maximum power-point tracking (MPPT) needed to optimize energy conversion as well as bypass electronics to prevent temporarily unproductive modules from disrupting the output of active cells.

Maximizing the Output from Solar Modules - [Link]

15 Nov 2013

NewSolar

Researchers Steve Dunn at Queen Mary University and James Durrant at Imperial College London have been experimenting with a new design of thin, flexible solar cell made from zinc oxide. Manufacturing costs of the new cells will be significantly lower than conventional silicon based technology. The only disadvantage is their poor efficiency; just 1.2 %, a fraction of that achievable with silicon.

The material also exhibits piezo-electric properties, nanoscale rods of the material generate electricity when they are subjected to mechanical stresses produced by sound wave pressure. Sound levels as low as 75dB, equivalent to that from an office printer, were shown to improve efficiency. Durrant said “The key for us was that certain frequencies increased the solar cell output, we tried our initial tests with various types of music including pop, rock and classical”. Rock and pop were found to be the most effective. Using a signal generator to produce sounds similar to ambient noise they saw a 50 % increase in efficiency, rising from 1.2 % without sound to 1.8 % with sound.

New Solar Cell Shows a Preference for AC/DC - [Link]

21 Oct 2013

Julian Ilett demonstrates his Arduino Solar Charge Controller. He has mounted all of his Arduino modules to a piece of wood to keep everything nice and neat. [via]

“High efficiency values (96% – 97%) are achievable when the buck converter is stepping down from 18v to 12v. With a 72-cell panel and the converter stepping 35v down to 12v, the efficiency drops to around 88%.”

Arduino Solar Charge Controller - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits