Home Blog  





13 Nov 2014

fbd_snas643

by ti.com:

TI’s new HDC1000 integrated humidity and temperature sensor provides high accuracy and low power in a small, dust-resistant package.

Designers of building control equipment can implement accurate, energy-saving climate control in small spaces, while designers of home appliances and consumer goods can easily add humidity-sensing capabilities to their products.

High accuracy, low power

The HDC1000 consumes only 1.2 µA average current when measuring relative humidity and temperature at 11-bit resolution, once per second, extending battery life in remote applications.

HDC1000 – Low Power, High Accuracy Humidity Sensor with Integrated Digital Temperature Sensor - [Link]

7 Nov 2014

collage-600x332

Colin over at CuPID Controls writes:

We want to put our remote sense and control modules out into the wild and read and aggregate them as it makes sense.
Our basic system layout is as below. We’ve got multiple wireless nodes that broadcast data periodically, and a controller/aggregator that will log this data, acknowledge receipt, and do something useful with it. Eventually, we may have intermediate powered nodes that serve to mesh the grid out, but for now, our nodes just send data to the controller.
We’re currently using these awesome little RF units, called Moteinos. They are an Arduino clone that can use the standard IDE with their bootloader. They’ve got the ever-so-popular ATMega328P chip that is familiar to anybody working with an Arduino Nano or Uno.

[via]

Adventures in Moteino: Remote temperature monitor - [Link]

27 Oct 2014

F4NPSGWI1OU3J34.MEDIUM

by appleman123987 @ instructables.com:

The planterbot is a plant monitoring robot. It uses capacitance for sensing moisture from the plant instead of using the usual soil probe, this means that wires don’t go into the plant. It also detects temperature and light using thermistors and Cds photocells and displays the temperature and light graphically on the front facing LCD.

Planterbot – The Plant Monitoring Robot - [Link]

13 Sep 2014

Charles Edward Pax has announced that the T400 temperature datalogger is now being offered on Kickstarter!

The Pax Instruments T400 datalogger is an open source four-channel thermocouple temperature datalogger based on the Arduino™ Leonardo platform. It is ready to use out of the box with the features you want most. Measurements can be logged to MicoSD card, printed to serial port, and graphed. The T400 is a great tool for anything from live thermal process monitoring in the lab to long-term environmental data collection in the field.

[via]

Data logger handles four thermocouples - [Link]


12 Sep 2014

BroadcomIot

by elektor.com:

What could you make with a key fob containing a Bluetooth (BCM20737S) Smart chip, gyroscope, accelerometer, compass, barometer and humidity/temperature sensors? Broadcom are hoping their WICED (pronounced wicked) Sense kit will make an ideal development platform for engineers and developers working on the next generation of IoT applications. Together with the hardware Broadcom have an integrated Software Development Kit (SDK) using the WICED Smart SDK v2.1 and a downloadable WICED Sense app from the Apple App store or from Google Play for Android devices to allow interaction with the fob via a smartphone or tablet etc.

Something Wicked this Way Comes - [Link]

6 Sep 2014

FYF3GCGHOHY6T61.MEDIUM

by BrittLiv @ instructables.com:

Heating things up is one of the most performed tasks in a lab. Quite a lot of times it is not enough to simply hold something at a certain temperature, but the rate at which something is heated and for how long is just as important. Especially when you try to develop catalysts for chemical processes, the temperature program and exact temperature control is crucial and you probably do not want to stay in the lab for 16 hours to manually adapt your temperature program. Unfortunately, programmable temperature controllers that can automate processes are really expensive. So I decided to build a highly customizable controller that is able to run temperature ramps and read multiple different temperature programs from a SD card. It also provides a logging function on the SD card that allows you to evaluate the resulting temperature profile after running a program.

Programmable Temperature Controller + Hot Plate - [Link]

15 Aug 2014

PIC18_Clock

by embedded-lab.com:

This DIY digital clock plus thermometer is designed by Joe Farr and is based on PIC18F25K22 microcontroller. The complete construction details of this project including circuit diagrams, PCB layouts and PIC firmware are posted in his website. He developed his firmware using Proton PIC BASIC compiler, which is available for download for free for this particular PIC microcontroller. He uses DS1302 RTC for timekeeping and DS18B20 for temperature measurement. The temperature and time are displayed on four 2″ seven segment LED displays.

Another PIC-based digital thermometer and clock - [Link]

7 Aug 2014

IMG_0587-600x448

A simple temperature control system for 3D print or other constant temperature control purpose by Xiang:

I plan to build a home-made 3D printer controlled by my Raspberry Pi, which, unfortunately, does not have any analog data acquisition pin. Therefore I decide to build a stand-alone temperature control system.
The idea is very simple. I use a power resistor as the heater and a thermistor as the temperature sensor. The system contains an LM324 quad op-amps chip. One op-amp is used as a comparator to compare the thermistor resistance with a nominal resistance and output LOW or HIGH as the comparison result. The other three op-amps inside the LM324 are used to perform some linear transformation and output a voltage that is proportional to the thermistor temperature. This voltage is applied to a 0-30V voltmeter so one can read the temperature. A N-Channel MOSFET transistor is used to control on/off of the heater.

[via]

Simple temperature control system - [Link]

2 Aug 2014

iotera

by elektor.com:

We have already seen a number of ideas for tracking tags seeking funds on Kickstarter, most systems are limited by the range of Bluetooth communication with a smart device. This system from Iotera tackles the problem using cloud-based thinking: The basic wireless system consists of one or more tags or ‘iotas’ and a home base unit. Each 22 x 11 x 3 mm iota contains a  chip, accelerometer, temperature sensor, speaker, RF transceiver, Bluetooth (unused so far) and a battery to give up to three months operation. Each iota communicates with the home base unit using wireless channels in the 902 to 928 MHz band giving a range of up to four-miles. Back home, the base unit receives the low-speed transmissions from the iota tag and forwards the information to a server via a Wi-Fi connection.

Novel Cloud-based Tag System - [Link]

28 Jul 2014

screenshot

by dzzie @ github.com

The Dht22 sensor is installed in the humidor.

The arduino takes a reading every 20 minutes, and uploads the data to your webserver.

The PHP script will record the data to the database. If the temp or humidity is out of desired range, it will send you an email alert.

Alerts must be manually cleared latter by logging into the web site, so you are not spammed, before you get a chance to fix it.

When you add water, push the select button on the LCD sheild to record it. This will be saved to the db as well. Power resets will also be recorded to the database.

See screen shot for example web report.

Temperature controlled humidor with web logging, monitoring and alerts - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits