Home Blog  





7 Jan 2015

sytadin_02

by weirdlab.fr:

This will help to see the state of roads, in live, just need to load your favorite (urban or not) traffic map.

To use the touch screen, we run under a Raspbian distribution, you can download the image file here already configured to work with the XPT2046 LCD Control (most common 3.2 TFT found on ebay) . Extract the image file on a 2Gb mini SD Card, and run the setup config.

Real-Time traffic state with Raspberry Pi in your car - [Link]

26 Dec 2014

obr1647_1

New 3,2“ and 3,5“ displays from company 4D Systems intended for Raspberry Pi are able to make a complete standalone system from this microcomputer.

Graphic output is always beneficial, enabling to use embedded microcomputer as a user interface (HMI) or at least to display various variables etc. There are many ways to reach it, but probably the most desirable solution would be to connect a display and nothing to solve.

New graphic modules 4DPi-32 and 4DPi-35 belong right to this group of ideal solutions, as they´re directly designed for Raspberry Pi (A,B, B+) – electrically and mechanically, while the I/O connector remains still available.

Simplicity of usage is empowered by a fact, that they don´t require (external) power supply, as they´re powered from the computer itself. Communication is done through a high speed 48 MHz SPI connection. Speed of a built-in processor enables displaying of pictures and videos with up 25 fps speed (even more if images can be compressed). Resistive touch panel enables operation of the whole system without a mouse.

As for the size, there´s only a small difference between 4DPi-32 a 4DPi-35 modules – the biggest difference is in resolution 480 x 320 px (4DPI-35) vs. 320×240 px (4Dpi-32). Both displays display GUI (primary) output of the Raspberry Pi – the same as if we had a monitor connected.

These novelties are already our stable stock item. Detailed information will provide you the 4DPi-32 and 4DPi-35 datasheets.

Add the 4-th dimension to your Raspberry Pi - [Link]

24 Dec 2014

An Arduino pulse sensor project from Bajdi:

I found a little heart rate sensor @ ICstation. It is a clone of the open hardware pulse sensor. The sensor is well documented, and it comes with Arduino and Processing example code.
To try it out I connected the sensor to an ATmega328 running at 3.3V and loaded the example Arduino code. I could now see my heart beat on the Arduino serial monitor :)
I then connected a 2.2″ TFT display to the Arduino and tried to figure out how to display the sensor output on it. Sounds simple but unfortunately it isn’t. Updating the full screen (320×240 pixels) is really slow. So I needed some smarter code to update only the pixels that needed to change. I happened to stumble on Matthew McMillans blog, he wrote some smart code to use a similar display as a speedometer. So I borrowed some of his code and mixed it with the example code of the pulse sensor. You can see the result in the above video.

[via]

Arduino heart rate sensor - [Link]

19 Dec 2014

ultralowpowe

by Hanne Degans @ phys.org:

At this week’s IEDM 2014, held in San Francisco, California, nanoelectronics research center imec demonstrated an ultra-low power RFID transponder chip. Operating at sub 1V voltage and realized in thin-film transistor technology (TFTs) on plastic film, the chip paves the way for universal sensing applications, such as item level RFID tagging, body area networks (BAN) and environmental monitoring, that require prolonged remote autonomy, and ultimate thinness, flexibility and robustness.

One of the major drivers of the semiconductor industry is the Internet of Things (IoT). Market studies envision a society where billions of autonomous sensor nodes are seamlessly integrated into objects, in the environment and on human bodies, operating independently for months, interacting with each other and connecting to the internet. This IoT is expected to improve and enhance daily-lives through smart houses and smart cars, personal health monitoring and much more.

Ultralow-power RFID transponder chip in thin-film transistor technology on plastic - [Link]


12 Nov 2014

While TFTs have been the mainstay of displays for years, OLEDs are becoming more prevalent as their price drops due to the phenomenal increase in quality from TFT to OLED technology. We received this demo board from Newhaven that effectively illustrates side by side the differences between TFT and OLED technology, using a 1.69 inch 160 x 128 OLED display and a 1.8 inch 160 by 128 TFT display.

Tech Lab – Newhaven Full Color OLED Displays - [Link]

21 Oct 2014

TFT-LCD_3-600x374

LG Display has an excellent article on how they build TFT LCD displays:

Ever wondered how the TV and monitor displays you use every day work? The TFT-LCD manufacturing process consists of a set of processes for producing TFT, color filtering, cell, module and others. LG Display Newsroom gives a detailed, but easy to follow explanation of the entire steps below.

Let’s take a closer look at the production process for a TFT board, the bottom-most layer of an LCD panel. The image above depicts a TFT board, which consists of rows of small rectangular sections that together resembles a chessboard. Each rectangular section is a pixel, and each pixel contains a transistor that controls its function. The TFT process is the process that builds these transistors on top of a glass substrate.

[via]

TFT-LCD Production Process Explained - [Link]

26 Sep 2014

FIBMI6CI0C8XQQD.MEDIUM

by Sound Guy @ instructables.com:

You may be familiar with a website in the UK called Colour Clock (http://thecolourclock.co.uk/) which converts the time into a hex value and then uses that value to update the background color. It’s very hypnotic and once you get used to how it works you can actually tell where you are in the day just by glancing at the screen from across the room.

I had an Arduino Uno R3 and an Adafruit 1.8″ Color TFT Shield w/microSD and Joystick that I was trying to use for another project that kept stalling out. One night just for fun I decided to see if I could recreate the Colour Clock and it only took a couple hours. If you’re familiar with Arduino you could easily swap parts out for a simple TFT breakout board and something tiny like a Beetle and make a very compact unit. You could even wear it as a badge.

Arduino TFT Color Clock - [Link]

19 Aug 2014

gps-navigation-system-based-on-Auduino

Built on the basis of Arduino UNO, GPS, SD card, TFT, GPS map navigation system is to obtain the real-time position information via GPS, to send it to UNO for calculation, according to the calculating results, and teamed up with the

map file stored in SD card, thus presenting the position on TFT. The GPS system, owing the function to store the current position information, can be applied to running positioning and to record the running tracing.

Arduino GPS Map Navigation System - [Link]

12 Aug 2014

dds-600x450

herpderp shares his waveform generator:

Here is my last project, a tiny waveform generator based on my previous project and some components:
– An AD9834 (DDS chip with sinus/triangle output)
– 2 x AD5310 (10bit DAC: one for the Vpp control, another one the offset control)
– 3 x LM7171 (Fast OPA)
– 3 x LT1616 (switching regulator: +5V, +7V, -7V)

This waveform generator is directly powered by a standard 12V jack and is capable of outputting a 10Vpp signal at 1MHz (between -5V and +5V, sinus waveform, no load). Above 1MHz, the output starts fading, reaching only 9Vpp at 4MHz (maximal frequency). Frequency, amplitude and offset are digitally controlled through the smart TFT.
Three “basic” waveforms are provided: sinus and triangle, coming from the DDS chip (0.1Hz to 4MHz, 0.1Hz step), and PWM coming from the microcontroller (0.1Hz to 1MHz, variable steps).

Tiny waveform generator - [Link]

13 Jul 2014

obr1555_1

Discovering of overheating and joints with a high resistance has never been easier and safer. With the type Flir i3 now moreover price-affordable.

Thermal cameras, i.e. cameras sensitive in infrared range bring a useful information – picture with virtual colors responding to a temperature of a scanned surface. Maybe, at the word “thermal camera” you too get an idea about a well known usage in buildings – inspection of a heat leakage (thermal bridges) = status of a thermal insulation of buildings. But that´s only one of many ways to use these devices. In electronics and power engineering it´s far more interesting for example:

  • searching for faults on a PCB, optimizing of layout in respect to an even heat distribution
  • inspection of distribution boxes with cables, terminal blocks and circuit breakers
  • inspection of motors and transformers
  • inspection of cables interconnections (overheating caused by a high resistance)
  • inspection of cooling efficiency – heatsinks, fans, …
  • inspection of solar panels

…and all this at full operation and under (often high) voltage.

„I have an infrared thermometer, thus I need no camera” – this is a frequent opinion – until the time, you once try working with a camera. The joke is, that one picture from for example camera Flir i3 with resolution of “only” 60×60 pixels equals to 3600 measurements of an IR thermometer. It can be said, that one picture taken by the camera even exceeds 3600 measurements (done by an IR thermometer), because a spatial resolution of the thermal camera is usually better (surface measured by one pixel is smaller) than that of IR thermometers. This way it can happen, that a small source of heat (for example a small overheated component) can´t be discovered by an IR thermometer, while with a camera it will be clearly visible. Naturally, there are many applications where only an IR thermometer is sufficient, but cameras are far better for a professional usage and a maximum work efficiency.

That´s why we decided to incorporate into our offer the world renowned cameras from company FLIR, which is on the edge of development in this segment. As a standard stock item can be found type Flir i3 (3600 px) with resolution of 0.15°C and a viewing angle 12,5°x 12,5°. Big 2,8“ TFT display shows all necessary information and settings. Very advantageous is a possibility to store up to 5000 snapshots into a uSD card (2GB, jpg) and a consequent transfer of files into a PC through a USB. Further detailed information will provide you the Flir i3 datasheet.
Upon order we´re able to supply you any other type from company FLIR in a short leadtime..

Even hidden faults can be found with FLIR thermal cameras - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits