Home Blog  

6 Mar 2015


by elektor.com:

TEXAS Instruments has announced the new SimpleLink ultra-low power wireless MCU platform. The platform has been designed to use so little energy it can be powered from harvested energy or will run for years on a coin cell. For versatility the platform supports multiple wireless connectivity standards using a single-chip and identical RF design. The SimpleLink ultra-low power platform supports Bluetooth low energy, ZigBee, 6LoWPAN, Sub-1 GHz, ZigBee RF4CE and proprietary modes up to 5 Mbps.

The first members of the SimpleLink devices to be introduced are the CC2640 which supports Bluetooth Smart and the CC2630 for 6LoWPAN and ZigBee. The CC2650 wireless MCU supports multiple 2.4 GHz technologies including Bluetooth Smart, 6LoWPAN, ZigBee and RF4CE. The support for such a wide range of radio standards helps future-proof designs and gives the ability to configure a chosen technology at the time of installation in the field. Planned for introduction later in 2015 are the CC1310 for Sub-1 GHz operation and the CC2620 for ZigBee RF4CE.

Ultra Low Power Wireless IoT Platform - [Link]

28 Nov 2014


by elektor.com:

In a bid to encourage greater use of TI’s Programmable Real-time Unit (PRU) built into the Sitara AM335x and AM437x family of devices which power the BeagleBone Black development board Texas have announced the PRU cape. The PRU is made up of dual 200 MHz coprocessors, implementing a low-latency subsystem optimized for deterministic, real-time processing allowing direct access to I/Os. It would be fair to say that this capability is seldom used by BeagleBone developers because it has been found to be complex to program.

The Texas PRU Cape - [Link]

13 Nov 2014


by ti.com:

TI’s new HDC1000 integrated humidity and temperature sensor provides high accuracy and low power in a small, dust-resistant package.

Designers of building control equipment can implement accurate, energy-saving climate control in small spaces, while designers of home appliances and consumer goods can easily add humidity-sensing capabilities to their products.

High accuracy, low power

The HDC1000 consumes only 1.2 µA average current when measuring relative humidity and temperature at 11-bit resolution, once per second, extending battery life in remote applications.

HDC1000 – Low Power, High Accuracy Humidity Sensor with Integrated Digital Temperature Sensor - [Link]

21 Oct 2014


by Suzanne Deffree @ edn.com:

Texas Instruments announced plans for the Regency TR-1, the first transistor radio to be commercially sold, on October 18, 1954.

The move was a major one in tech history that would help propel transistors into mainstream use and also give new definition to portable electronics.

TI was producing germanium transistors at the time, but the market had been slow to respond, comfortable with vacuum tubes.

However, the use of transistors instead of vacuum tubes as the amplifier elements meant that the device was much smaller, required less power to operate, and was more shock-resistant. Transistor use also allowed “instant-on” operation because there were no filaments to heat up.

TI announces 1st transistor radio, October 18, 1954 - [Link]

10 May 2014

by Paul Watson:

This beehive weight scale uses a TI LDC1000EVM inductance processor circuit to measure the weight of a Beehive, by detecting the the change in resonance due to a change in inductance, as the change in weight on the scale occurs. The processor sensed and measured differences; outputs are sent to a collocated laptop computer via a USB port and displayed by the TI software GUI on the screen. For this design concept, it was decided to design for a maximum of 160 lbs. The detailed PDF available below shows a range scale of desired performance, however the LDC1000 was not well understood by me at first, so this concept was a design to fit the unknown performance of the LDC1000, but adjusted to make it work.

Beehive scale uses inductive sensing - [Link]

11 Apr 2014


Marcus Linderoth built a clock using a TI MSP430g2553 microcontroller and a HPDL-1414 display, that is available at Github:

After having ported Contiki to the Launchpad, I was eager on doing something with it. I built this simple clock with a vintage HPDL-1414 “smart four-character 16-segment alphanumeric” display and a msp430g2553.


Clock with retro display - [Link]

9 Apr 2014


by electronicdesign.com:

With Texas Instruments’ WEBENCH Schematic Editor, engineers can customize power-management designs and simulate the circuit created within the WEBENCH environment. According to the company, the new feature reduces design and verification time from hours to minutes. The editing and simulation package maintains a library of over 40,000 components. As a result, it’s possible to incorporate multiple mixed output capacitors, filtering, board parasitics, and snubber circuits into WEBENCH power-supply designs. Then those customized power designs can be simulated (using the WEBENCH Power Designer’s Spice simulator) before they’re exported to CAD development platforms like Cadence OrCAD Capture CIS, Mentor Graphics Xpedition xDX Designer, CADSoft EAGLE, and Altium formats (e.g., Altium Designer). The WEBENCH environment consists of online tools such as Designer and Architect that enable end-to-end analog circuit design.

Customize Power-Management Designs With Editing/Simulation Environment - [Link]

6 Apr 2014


Texas Instruments unveiled a new Tilt & Roll Pixel (TRP) DLP pico chipset. According to TI, this is the smallest (at 0.3″, which is strange because the previous model was 0.2″) and most efficient DLP chip ever. It support HD resolutions (probably 720p) and can be used in pico projectors and wearable displays, augmented reality displays and other applications. [via]

The new Texas Instruments 0.3″ HD Tilt & Roll Pixel (TRP) DLP® Pico™ chipset is TI’s smallest, most power-efficient HD micro-mirror array and can generate 720p displays from compact applications, including tablets, smartphones, accessories, wearable displays, augmented reality displays, interactive surface computing, digital signage and control panels. The chipset delivers significantly higher levels of brightness and power efficiency, allowing developers to create a wide variety of applications and products in smaller form factors than ever before. The chipset’s fast switching speeds of up to thousands of times per second enable the world’s smallest true color RGB engines with 120Hz video performance.

TI’s smallest, most efficient HD pico chipset 0.3″ HD TRP DLP - [Link]

5 Apr 2014

by scienceprog.com

Over a week ago I’ve got a notice that Texas Instruments (TI) is giving away a 50% coupon for MSP430_FRAM related devices. Without hesitation ordered their MSP-EXP430FR5739 TI experimenters board that price went down to $14.50 including free shipping.

by embedds.com

MSP EXP430FR5739 FRAM based microcontroller board is interesting piece of hardware. It features FRAM memory instead of Flash which is claimed to withstand almost unlimited number of Reads and Writes. It is also faster. It can substitute an EEPROM on board. But it is not very popular technology due to different manufacturing. On this development board there is MSP430 microcontroller which has 16KB FRAM, 1KB of SRAM. It carries eight LEDS, MTC thermistor, 3 axis digital accelerometer, optional LDR, couple buttons. So this is great for many uses.


Experiment with MSP430 FRAM board via web interface - [Link]

14 Nov 2013

active_filter_designBy Bonnie Baker

Active analog filters can be found in almost every electronic circuit. Audio systems use filters for frequency-band limiting and equalization. Designers of communication systems use filters for tuning specific frequencies and eliminating others. To attenuate high-frequency signals, every data acquisition system has either an anti-aliasing (low-pass) filter before the analog-to-digital converter (ADC) or an anti-imaging (low-pass) filter after the digital-to-analog converter (DAC). This analog filtering can also remove higher-frequency noise superimposed on the signal before it reaches the ADC or after it leaves the DAC. If an input signal to an ADC is beyond half of the converter’s sampling frequency, the magnitude of that signal is converted reliably; but the frequency is modified as it aliases back into the digital output.

Designing active analog filters in minutes - [Link]





Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits