Constant current linear LED driver IC improves efficiency for LED strips

The BCR430U constant current linear LED driver IC’s drop performance regulates LED current in standalone operation for LED lighting. No external power transistor is needed, says Infineon Technologies. Typical applications for the BCR430U include LED strips, architectural LED lighting, LED displays and retail, appliance and emergency lighting.

The voltage drop of the integrated driver IC can go down to 135mV at 50mA. This improves overall efficiency and provides the voltage headroom required to compensate for LED forward voltage tolerances and variances in the supply voltage, explains Infineon, for more flexibility in lighting design. Using the BRCU430U, additional LEDs can be added to lighting designs without changing the supply voltage.

The LED driver current ranges between five and 100mA, and can be easily adjusted via high Ohmic resistor on a dedicated pin. The supply voltage ranges between 6.0 and 42V. For safe and reliable operation and to extend the LED lifetime, a smart over-temperature controlling circuit reduces the LED current when the junction temperature is very high.

The BCR430U is available now in a SOT-23-6 package.

Robby – A Simple and Powerful Robot to Learn Electronics and Programming

Robby Robot

Over the years we have seen a significant interest in people wanting to learn electronics and programming but and mostly handicapped with what they could build. Over time, learning has been proven to be more reliable when learning is more practical, and we can quickly grasp the concept if one is seeing what he or she is building in real-time and promptly learn why it works the way it works.

Lego Education robotics which has been around for a while, has allowed students to become active leaders in their education as they build everything from animals for a robotic zoo to robots that play children’s games. Lego has been tremendous, and it has quite helped students grasped the concept of engineering and programming, but one of the significant drawbacks with Lego is; it has not been fully developed for the makers open source movement and also comes with a high-cost price, unlike some Arduino based development environments.

The Arduino has caused a revolution in bringing artists into the world of robotics. It has spawned numerous offshoots from very small to wearable processors. Building something with Arduino requires some necessary electronic circuity skills and basic programming which sometimes could be intimidating for the complete novice. Robby from Mr. Robotics is a new education robot for anyone interested in learning more about robotics while also learning about robotics and programming. Robby is based on the Arduino ecosystem.

The team from Mr. Robotics based in Lille, France are crowdfunding their new educational robot called Robby, a tool to learn electronics and programming while having fun. The team at Mr. Robotics believe in this technologically advancing world, everyone should have the opportunity to be imaginative and use it for creation and development. That will need to provide the enabling environment for grooming interest in programming while cultivating natural curiosity, Robby could be the tool to bridge those gaps.

“The creativity is the intelligence having fun.”

Albert Einstein

ROBBY robot is entirely hackable and adaptable with Plug & Play modules for any design scenario. So, today you can design to plug in a particular sensor and decide tomorrow you want another sensor in that position. Just unplug and plug back. The robot kit is fully programmable and allows you to add your own modules and sensors as well as choose your own architecture providing an open source scalable system complete with plug and play sensors. The robot kit is ideal for educational applications as well as keen hobbyists and makers.

At the heart of Robby is the ARM Cortex-M4F 32-bit microcontroller running up to 120 Mhz, and comes with three 12V DC precise motors and incremental encoders for direction, position and speed measurement. It includes a 12V extra Lipo 3S battery, Wi-Fi, USB and Bluetooth, buzzer and an open chassis for adding modules, sensors, components, and breadboard. Robby can be programmed with Blocky (graphical drag and drop block like programming) and with the Arduino IDE.

The Robby Robot is available to back via Kickstarter with pledges starting from €179 for the starter kit, €199 for the Explorer Kit, and €289 for the Creator kit. Mr. Robotics is offering the option of personalized kits costing up to €550 and some other customized packages. If Robby is successfully funded, worldwide shipping is expected to take place during August 2018.

More information about Robby can be found on their website here and their Kickstarter campaign.

Digi-Key launches a common parts library for the KiCad EDA Tool

Digi-Key Electronics has announced that it is in beta release of a library containing almost 1,000 common parts for the open-source KiCad schematic capture and PCB tool. By Ally Winning @ eenewsembedded.com:

The library will be hosted on the Digi-Key website. It was built after Digi-Key analyzed the top 1,000 parts that KiCad users would require. The library combines schematic symbols and PCB footprints into atomic elements and adds fields including part numbers and datasheet links. As the library has the same license as KiCad’s main library, it is freely available to all developers. The final release of the library is planned for early 2018.

Digi-Key launches a common parts library for the KiCad EDA Tool – [Link]

Arduino Communication with an Android App via Bluetooth

With the arrival of the IoT and the need for control, devices now need to do more than perform the basic functions for which they are built, they need to be capable of communicating with other devices like a mobile phone among others. There are different communication systems which can be adapted for communication between devices, they include systems like WiFi, RF, Bluetooth among several others. Our focus will be on communication over Bluetooth.

Today we will be building an Arduino based project which communicates with an app running on a smartphone (Android) via Bluetooth.

Arduino Communication with an Android App via Bluetooth – [Link]

Top 10 Single Board Computers (SBCs) Of The Previous Year

Introduction

Back in 2012, the arrival of Raspberry Pi started a new era of Single Board Computers – widely known as SBC. It attracted a huge number of hobbyists and tinkerers who are keen to create technology rather than just consuming it. Single board computers made designing complex and computationally expensive projects possible. Robotics, IoT, Computer Vision projects, DIY media center – just name it and SBC will get it done with ease.

Since the massive success of the Raspberry Pi, the market got filled with various single board computers from different developers. Almost all of them have similar features but with some uniqueness.

Nowadays, we can see SBCs as cheap as $9 to as expensive as $250. One should purchase an SBC carefully depending on the budget and the type of the project. This Top 10 List is based on the SBCs that were popular the previous year and it will help you to choose an SBC as per your requirement without much effort.

The Logic of Sorting

While sorting out some products and giving them ranks, the logic of sorting should be clarified. We can sort out SBCs in many ways – performance, form factor, price point, user community etc. In this article, we have kept hobbyists and tinkerers in mind and so, our primary focus is price point and performance at that price. As a result, some extremely powerful boards didn’t rank well just because of being too costly and not affordable by hobbyists. Also, we have not included boards introduced this year (2018) as the list is based on the top boards of the previous year (2017).

So, now you know how we sorted the boards. Let’s get started with the list. (more…)

Compact µModule regulator is for use with FPGAs, GPUs and ASICs

Designed for use in PCIe boards, communications infrastructure, cloud computing-based systems, medical, industrial, and test and measurement equipment, the LTM4646 is a dual 10A or single 20A output, step-down µModule PoL regulator from 5.0 or 12V input supply rails. It targets the PCB area constraints of densely populated system boards to power low voltage and high current devices such as FPGAs, ASICs, microprocessors and GPUs, says Analog Devices.

The LTM4646 includes inductors, MOSFETs, a DC/DC controller and supporting components, and is housed in a 11.25 x 15 x 5.01mm BGA package. Compared to the previous two single 10A output module solutions, the LTM4646 reduces the solution size of more than 25 per cent, says Analog Devices.

Total output voltage DC accuracy is guaranteed at ±1.5 per cent over line, load and temperature (-40 to +125 degree C). The onboard remote sense amplifiers on both outputs compensate for voltage drop caused by trace impedance of the PC board due to large load currents. Internal or external feedback loop compensation is selectable, enabling users to optimise loop stability and transient performance while minimising the number of output capacitors.

Peak efficiency at 12VIN to 1.0VOUT is 86 per cent. With 200LFM air flow, the LTM4646 delivers a full 20A continuously up to 85 degree C ambient, adds Analog Devices. The current mode architecture allows multi-phase parallel operation to increase output current with good current sharing, says the company.

The LTM4646 operates from 4.5 to 20V input, standalone. When 5.0V external bias is available, the device can operate from 2.375V. The output voltages are adjustable from 0.6 to 5.5V, enabling the LTM4646 to generate low voltage for digital devices but also 2.5, 3.3 and 5.0V, for system buses. The switching frequency can be programmed from 250kHz to 1.3MHz with one resistor, and can also be synchronised to an external clock ranging from 300kHz to 1MHz for noise-sensitive applications.

The LTM4646 has over-voltage and over-current protection.

http://www.linear.com/product/LTM4646

Comma AI’s Panda is a Car Hacking Dongle for Self-Driving Possibilities

Comma.ai is a self-driving car startup founded by George Hotz, the American hacker known for unlocking the iPhone and the PlayStation 3. Comma AI who originally wanted to build self-driving car kit, canceled their initial project due to safety concerns from NHTSA but later open-source their project and has now launched a Panda, an On-Board Diagnostics (OBD) II adapter that is expected to expose a car sensor data with the hopes of turning that information for self or assisted driving application.

Panda OBD-II Dongle

Panda is a small size OBD II dongle and will plug into the port of most new cars made since 1996 with preference giving to vehicles of 2010 and above. Panda supports 3 CAN (Controller Area Network), 2 LIN (Local Interconnect Network) and 1 GMLAN (General Motor Local Area Network) for access to almost all of the sensors in most of the cars on the road. It also includes WiFi and USB port to help interface with a computer and smartphone.

With a dimension of 34 mm x 50 mm x 27 mm, Panda can read a host of data. Panda will be able to measure the car speed, location (if available), fault codes, braking force, engine speed, gas level, and many more. To help parse all that information Comma AI also launched Cabana a CAN analysis tool.

Panda can be paired with Openpilot, the company’s open-source autonomous driving software and this pairing could be used to take control of a compatible vehicle’s gas, brakes, lights, and steering.

Some Specifications of Panda dongle

  • Dimensions –  34mm x 50mm x 27mm
  • Weight: 32g
  • Car Interfaces –
    • 3x CAN
    •  2x LIN
    • 1x GMLAN
  • Connectivity – USB (with fast charging support) & WiFi
  • Software Support
    • Android and iOS chffr (getchffr.com)
    • Cabana (comma CAN analysis tool)
    • Openpilot (open source self-driving)
    • Python library (pip install pandacan)
    • SocketCAN (Linux can-utils, Wireshark)
    • Wi-Fi ELM327 (Android and iOS apps)
    • Windows J2534 (Car manufacturer tools)

According to Hotz,

“the real point of shipping Panda out to people is to create that interface that cars don’t have. We want to plug cars into computers.”

Panda is available for ordering at about $99 on the comma AI product page and a GPS with no Wi-Fi variant available for $199

Particle Mesh – A Mesh-Enabled IoT Development Kits.

Particle, which has been known for its collection of  IoT focused development boards, and its Internet of Things (IoT) platform (Particle Cloud) has launched a new set of mesh network-enabled IoT development kits called Particle Mesh. Particle Mesh is expected to provide developers more insight into implementing mesh networking technology. They help to collect sensor data, exchange local messages, and share their connection to the cloud.

Particle Mesh Hardware
Particle Mesh Hardware

Particle Mesh features a new family of mesh-ready devices with Wi-Fi, BLE and LTE connectivity and also integrated with the Particle device cloud. Particle mesh consists of three main boards: The Argon, The Boron, and the Xenon. Each of these Particle Mesh boards has at least one form of outside connectivity option (LTE/3G/2G, Wi-Fi or Bluetooth) and an onboard mesh network hardware to facilitate setting up a mesh network for local communications between sensors and other particle mesh boards. All three devices are built around the Nordic nRF52840 MCU + BLE + mesh radio and follow the Adafruit Feather specification making it compatible with most Adafruit FeatherWing hardware accessories. (more…)

ATtiny85 Function Generator

David Johnson-Davies build a tiny function generator based on ATtiny85 microcontroller. He writes:

This article describes a simple function generator based on an ATtiny85. It can generate triangle, sawtooth, square, and rectangular waves, a pulse train, and noise. The frequency can be adjusted using a rotary encoder between 1Hz and 5kHz in steps of 1Hz, and the selected waveform and frequency is displayed on an OLED display.

This project really puts the ATtiny85 through its paces; it’s generating 8-bit samples at a 16kHz sampling rate, decoding the rotary encoder, switching between waveforms, and updating the OLED display via I2C.

ATtiny85 Function Generator – [Link]

By continuing to use the site, you agree to the use of cookies. more info

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close