Home Blog  





7 Nov 2014

FL0954NHHTE0PGU.MEDIUM

by MidnightMaker @ instructables.com:

This is a Solar Tracker. A full size, internet cloud connected, smartphone accessible Solar Tracker built mainly from 2x4s and plywood, employing wooden peg gears, recycled curtain poles, nuts, bolts and threaded rod. The solar tracker uses a home built electronic controller incorporating WiFi, stepper motor drives, accelerometer and magnetometer. The tracker was designed to drive a full size 90W panel in azimuth and elevation. The gears driving the tracker are wooden peg gears commonly used in the 16th century. The gears were designed using modern 3D CAD (Solidworks). Connecting the wooden peg gears to the internet cloud just seemed like the right thing to do. This is not a waterproof design – you will need to consider modifications to waterproof your derivative design.

Solar Tracker in the Internet Cloud - [Link]

26 Sep 2011

Daniel F. Butay & Michael T. Miller writes:

The design and implementation of a Maximum Peak Power Tracking system for a photovoltaic array using boost DC-DC converter topology is proposed. Using a closed-loop microprocessor control system, voltage and current are continuously monitored to determine the instantaneous power. Based on the power level calculated, an output pulse width modulation signal is used to continuously adjust the duty cycle of the converter to extract maximum power. Using a Thevenin power source as well as a solar panel simulator, system design testing confirms simulation of expected results and theoretical operation is obtained.

Maximum Peak Power Tracker  - [Link]

26 Sep 2011

timnolan.com writes:

To understand why the PPT can increase the efficiency of your solar power charging system a closer at the electrical characteristics of a solar panel is necessary. Solar panels convert photons from the sun striking their surfaces into electricity of a characteristic voltage and current. The solar panel’s electrical output can be plotted on a graph of voltage vs. current: an IV curve. I represents the current in amps and V represents the voltage in volts. The resulting line on the graph shows the current output of the panel for each voltage at a specific light level and temperature. (Fig. 2) The current is constant until reaching the higher voltages, when it falls off rapidly. This IV curve is applicable to the electrical output of all solar panels.

Arduino Peak Power Tracker Solar Charger - [Link]

6 May 2011

fanman1981 writes: [via]

My solar tracker i made out of 2 harbor freight solar kits,2 pieces of uni strut a channel master antenna motor on a old topsie turvy deck plant stand a dish bracket holding the panels on motor and a sony remote programed to turn it at certain times during the day!!

Diy Solar Tracker using spare parts – [Link]


14 Apr 2011

pyroelectro.com writes:

As the solar power industry grows, so must too sun tracking circuitry. This project gives a short but sweet example of how to build a system for sun-tracking. It’s not professional grade, but it is a great place to start if you’re looking to build your own sun-tracking solar panel.

Building a Sun Tracker – [Link]

22 Mar 2011

Solar panels, hot glue, old CDs, an Arduino, a servo, resistors and LDRs, that’s what luwe1 used to build this solar tracker. [via]

Solar powered Arduino sun tracker – [Link]

18 Nov 2010

This project is a solar tracker based on light depended resistors, relays and opamps. Check the installation of circuit solar tracker to diseqc motor.

Relay Solar Tracker - [Link]

9 Aug 2010

This project describes how to build a portable solar charger tracker. It analyses the charging process. This unit connects with a small solar panel and a LiPo battery and keep track of solar panel voltage, battery voltage and current goes through the panel to battery charger. The design is intended for 6V panels and single cell LiPo batteries but can be adapted for any kind of panel and charger. Device is powered from batteries and uses Arduino Duemilanove. [via]

Portable solar charging tracker - [Link]

5 Jul 2010

This project shows how to build a star-tracker. A star-tracker is a device used to help amateur astronomers to take clear pictures of the sky by following the earth rotation. Using a tracker, sky appears steady. Check construction details on the link below. [via]

Build a star-tracker for your camera - [Link]

31 Jul 2008

The length of the sleep cycle varies for each person, and averages about 90 minutes. I wanted to try to measure the length of mine, without having to wake up and check a clock. I also wanted to get an idea of how much I naturally move around during the night, and what patterns I might find therein. [via]

Sleep Tracker - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits