How to drive Nokia 5110 84×48 LCD display with Arduino

In the previous tutorial I showed how to build a weather station using DHT11 and BMP180 with an Arduino. However, the project has a downside which is the power consumption of the 16X2 LCD. If we were building a battery powered project with the desire to last for several weeks and probably several months, like a weather station for instance, then we’ll have to replace the LCD keypad shield from the previous tutorials and go for something like the low powered Nokia 5110 84×84 LCD display. In this tutorial I will be showing you how to drive this display with the Arduino and thus build projects with longer battery life.

How to drive Nokia 5110 84×48 LCD display with Arduino – [Link]

Atmel ATmega8 – A World-Famous Microcontroller Created By Two Annoyed Students

AVR is a family of microcontrollers developed by Atmel beginning in 1996. These are modified Harvard architecture 8-bit RISC single-chip microcontrollers. The Atmel AVR core combines a rich instruction set with 32 general purpose working registers. Atmel’s ATmega8 comes from the AVR line of microcontroller and it is a gem of the modern maker movement. It is used as the heart of the first generation of the Arduino board to be widely adopted by electronics hobbyists. Countless creative projects are designed with those cheap yet powerful chips.

ATmega8 was originally developed in the early 1990s by two students at the Norwegian University of Science and TechnologyAlf-Egil Bogen, and Vegard Wollan. Microcontrollers are different from microprocessors in terms of built-in memory and I/O peripherals. They typically have their own onboard program memory and RAM, rather than relying on external chips for these resources.

When Bogen and Wollan were in university, they faced trouble in following the steep learning curve of the complex instruction sets for microprocessors. Most of the processors used in those days were CISC (Complex instruction set computer) based. They wanted to design a RISC (reduced instruction set computer) based microcontroller with an aim in mind to create something that would be easy to program and relatively powerful. Bogen explained in a YouTube video,

I found them very hard to us. The learning curve to get to use them was hard; I found the development tools crappy. And also I saw that the performance of the products was not where I wanted it to be.

Alf-Egil Bogen – one of the creators of the AVR core

Computers, that are typically used on the day-to-day basis, use Von Neumann architecture. In this architecture, programs are loaded into the RAM first and then executed from the same. AVR uses the Harvard architecture, in which program memory and working RAM are kept separate, thus enables faster execution of instructions. The first prototype of AVR used ROM, which is not re-writeable, as the program memory. Later Atmel added easily programmable (and reprogrammable) flash memory to the processor core. The first commercial AVR chip, the AT90S8515, was released in 1996. Wollan says in a video,

instructions and stuff were things we were actually thinking of from the very beginning to make it efficient and easy to use from a high-level point of view

Vegard Wollen – another creator of AVR

CH340E, A New Small Serial to USB Chip

WCH, a Chinese integrated circuits manufacturer, has just released a new serial to USB chip called CH340E. Unlike other CH340 chips, it doesn’t require an external crystal and also needs less PCB space and BOM.

CH340 is a 3x3mm tiny chip comes in MSOP10 package and has 10 pins. Although it is smaller than other alternatives, it is a little more expensive than them. But considering other components and PCB size needed, the total cost of the BOM may be lower.

According to Electrodragon, it needs only two external parts to build a full function circuit. They also tested it with up to 150,000 baud rate to flash an ESP8266 chip. Most features and technical specifications are the some for CH340 family including CH340E, so the same drivers will work with it.

CH340E features

  • Full-speed USB device interface, compatible with USB V2.0.
  • Emulation standard serial port used to upgrade the original serial peripherals or add additional serial port via USB.
  • Computer applications under the Windows operating system serial port are fully compatible, without modification.
  • Hardware full duplex serial port, built-in send and receive buffer, support communication baud rate 50bps ~ 2Mbps.
  • Support common MODEM contact signal RTS, DTR, DCD, RI, DSR, CTS.
  • Through the additional level conversion device, providing RS232, RS485, RS422 and other interfaces.
  • Software compatible CH341, CH341 driver can be used directly.
  • Support 5V supply voltage and 3.3V supply voltage or even 3V supply voltage.
  • Built-in clock, no external crystal.
  • Available in SOP-16 and SSOP-20 and MSOP-10 lead – free packages, RoHS compliant.

The chip costs about 42 cents with a minimum order of 5 pieces on Eelectrodragon store. There is also an option to get a small board featuring the CH340E for about $1, and maybe cheaper in the future. Finally, the most powerful feature of this chip is that you can easily add USB connectivity to your own design.

Source: CNX-software

Using an ATmega328 without a crystal

Here is another guide from David Johnson-Davies @ explaining how to program an ATmega328 on a breadboard using the Arduino IDE. The guide is focused on how to use the internal clock of the microcontroller and how to achieve this using the Arduino environment. By default Arduino IDE doesn’t include a Boards option for an ATmega328 without an external crystal, so here is how to add this support.

Programmable Power Supply Using OPA548

Project provides 1.2 to 20V DC output with current limiter adjustable to 0-5A. I have tested the circuit with 250mA output without a heat sink. Project is capable to drive 3A continues load and 5A peak, large size heat sink required for full load. The tiny power supply based on low cost OPA548 high-voltage and high-current operational amplifier is ideal for driving a wide variety of loads. The project provides excellent low-level signal accuracy and high-output voltage and current. The circuits operate with single supply 24V DC and logic supply 5V DC. The IC is internally protected against over-temperature condition and current overload. Trimmer potentiometer PR1 sets the output voltages, PR2 helps to set the current limit 0 to 5Amps.
Programmable Power Supply Using OPA548 – [Link]

Bomist – Parts Inventory and BOM Management for Electronics

It all started a few years ago with Component Organizer, than BOMER and it’s now called BOMIST. The software runs locally, so no server nor setup required and you can have as many databases as you want (just run as many instances of BOMIST as you want). Additionally, it is integrated with Octopart, meaning you get plenty of useful real-time data: datasheets, descriptions, package names, values, prices as well as other useful information are automatically fetched online. Also, importing data into BOMIST is VERY easy which means you’ll get up and running in no time. BOMIST will keep improving, many new features are already inline and your feedback is always greatly appreciated. Give it a try, it’s FREE.

Volterman, Your Personal Smart Wallet

With the rapid growth of technology, smartphones and e-payments are replacing cards, cash, and wallets. However, developers are still trying to keep wallets relevant in the 21st century, and Volterman is the newest attempts. Besides WiFi hotspot and power bank, Volterman also provides novel security features to protect your phone and wallet from loss.

Similar to other smart wallets, Volterman has a GPS tracking capability, so you can find it easily in case it lost. Through Bluetooth connectivity, it connects to the smartphone to ensure that you will not forget one of them. An alarm will start ringing to notify you and pick up what you have missed.

The new innovative idea on Volterman is a small built-in camera. It captures everyone trying to open the wallet while “lost mode” is running. The pictures are sent directly to the paired smartphone, meaning that you will know who is using your wallet and where is he. With an embedded SIM card, you are also able to track your wallet via the website.

Volterman’s Embedded System Specification

Inside the wallet, there is a full computing system to do all the stuff. The main components are:

  • CPU: ARM Cortex A9
  • Memory: 512MB RAM, and 32GB ROM
  • SD card: 64GB embedded card
  • Bluetooth: 5.0
  • Camera: 4MP
  • Mobile Network: Worldwide 2G, 3G
  • Wi-Fi: 802.11 BGN, Hotspot
  • Connector: magnetic connecter by Volterman
  • Power Bank: 2000mA, 2600mA, 5000mA, in addition to the capability of wireless charging.
  • Input voltage: 5V, 1A
  • Output voltage: 5V, 500mA

An interesting point is that the purchase price is covering the data charges for the GPS tracking and sending of photos to the Volterman server. According to the makers, Volterman will automatically connect to local networks in 98 countries, but at the moment the exact tariffs from country to country are unclear. However, it is offering up to 3 times cheaper internet cost than the regular price, with an early estimate of around $15 per 1 GB.

The Volterman comes in three different sizes: a small cardholder model $98 with 2,000-mAh power bank, a conventional bifold wallet $135 with 2,600-mAh power bank, or a larger travel size $157 designed to hold more cards, a passport and with a 5,000-mAh power bank.

After reaching more than one million dollars on IndieGoGo, Volterman is now ready for mass production and estimated to start shipping and the first quarter of 2018.

Take a look at the crowdfunding campaign video below:

Proto Board Power Supply

David Johnson-Davies @ build a breadboard friendly power supply to power your Arduino or other low power electronics. The power supply is able to deliver 0V to 5.5V at up to 0.5A and it’s powered from two Li-Ion rechargeable batteries. The output can be adjusted using a rotary encoder, and the voltage is displayed on a three-digit 7-segment display. The whole circuit is controlled by an ATmega328.

72 Channels Serial To Parallel Driver Board Using 74HC595 & ULN2803

72 channels Serial (SPI) to parallel driver board has been designed for various applications. This project can be used as multi Solenoid driver, large size 7 segment display driver, bar graph driver, and LED driver. The project works with 5V logic levels. Output load supply 12V-48V DC and each output can drive 500mA load.

I have used 3 digits 2.3Inch 7 segment displays as an example, this board can handle up to 9 digits. The board can serve many applications like, Stop Watch, digital timer, counter, score board, token display and lot more.

Project built around 74HC595 and ULN2803 ICs, The 74HC595 devices contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3-state outputs. Separate clocks are provided for both the shift and storage register.

72 Channels Serial To Parallel Driver Board Using 74HC595 & ULN2803 – [Link]

LCR-Reader MP: the Ultimate PCB Debugging Tool

With LCR-, ESR-meter, AC/DC Voltage/Current meter, Oscilloscope and Signal Generator this device covers all needs for low frequency PCB debugging.

LCR-Reader-MP recently released by Siborg Systems Inc. which joins the LCR-Reader family of handheld LCR- and ESR-meters, offers users unprecedented functionality for testing circuits and components and a record high basic accuracy of 0.1%.

The IEEE International Electron Devices Meeting (IEDM) is an annual nano- and microelectronics conference held in December since 1955. The scope covers technological breakthroughs in the areas of semiconductor and related device technologies, manufacturing, design, modeling, physics and circuit-device interaction.

Digital Multimeter LCR-Reader-MP is a continuation of the LCR-Reader line of products and features a design of combining a lightweight multimeter, and LCD display and a set of tweezers with gold-plated probes. The device is controlled using a jog-wheel navigation similar to the one used in the original Smart Tweezers ST-1. The new device offers more measurement features than any other tweezer meter uo to date. These features include: oscilloscope mode, LED/diode measurements, AC/DC voltage measurements, continuity testing, pulse counting, signal generator, super large capacitance measurements, etc. Most importantly it offers the ability to test at 100 kHz test frequency that allows for a 0.01 pF resolution for capacitance and 1 nH resolution for inductance.