Diamond-Based MOSFETs Are Now Real

A research group at Japan’s National Institute for Materials Science (NIMS) has developed logic circuits equipped with diamond-based metal-oxide-semiconductor field-effect-transistors (MOSFETs) at two different operation modes – a first step toward the development of diamond integrated circuits operational under extreme environments.

Is Diamond Suitable for this?

In fact, diamond has high carrier mobility, a high breakdown electric field and high thermal conductivity. Therefore, it is a promising material to use in the development of current switches and integrated circuits. Specifically to operate stably at high-temperature, high-frequency, and high-power. However, it had been difficult to enable diamond-based MOSFETs to control the polarity of the threshold voltage. In addition, fabricating MOSFETs of two different modes on the same substrate was a challenge. The modes are:  a depletion mode (D mode) and an enhancement mode (E mode).

Thus, the research group has successfully developed a logic circuit equipped with modes. Thanks to threshold control technique that allowed them create hydrogenated diamond NOT and NOR logic circuits composed of D-mode and E-mode MOSFETs.

Micrograph of a fabricated logic circuit equipped with diamond-based transistors

This study was published in the online version of IEEE Electron Device Letters and it is available at the IEEE Electron Digital Library website. Also, check the official announcement for more details.

Meet Spritzer, Sony New Arduino

Sony has recently launched one of its new products, Spritzer! Spritzer is an Arduino-compatible board for IoT applications that has built-in GPS, audio codec, and low power consumption.

While it is Arduino-compatible, the board allows any developer to easily start app development using the free Arduino IDE and an ordinary USB cable. In fact, the board features a processing chip with a unique combination of low power consumption and a rapid clock speed of 156MHz. Thus, it is extremely versatile and it can be deployed for a vast range of use cases.

For the first time, the company demonstrated the board at Tokyo Maker Faire last month with a drone utilizing the GPS and the 6-axis sensor support, a smart speaker utilizing the audio functions, a self-driving line-tracing miniature car, and a low-power smart sensing IoT camera using the camera interface of Spritzer.

Sony Spritzer specifications

  • MCU – Sony CDX5602 ARM Cortex-M4F ×6 micro-controller clocked at up to 156 MHz with 1.5MB SRAM
  • Storage – 8MB Flash Memory, micro SD card
  • GNSS – GPS, GLONASS, supported
  • Audio – 3.5mm audio jack
  • Expansion I/Os
    • Digital I/O Pins – SPI, I2C, UART, PWM ×4 (3.3V)
    • Analog Pins – 6ch (3.3V range)
    • Audio I/O – 8ch Digital MICs or 4ch Analog MICs, Stereo Speaker, I2S, CXD5247 audio codec with 192 kHz/24bit High-Resolution audio
    • 2x camera interfaces
  • USB – 1x micro USB port for programming
Spritzer Block Diagram

“You’ll have to connect external module to get Bluetooth, WiFi, and LTE, a display up to 360×240 resolution can be used via SPI, all sort of sensors can be connected via the expansion header, the board is suitable for microphone arrays, and it can be powered by batteries thanks to a charger circuit and fuel gauge inside CXD5247 audio codec / PMU chip.” – CNXSoft

More details about the board will be available by 2018. Until then, check this Japanese official page about Spritzer, or this translated page.

Learn Arduino Easily with The Arduino Inventor’s Guide

Are you looking for Arduino tutorials? Already over-whelmed by the guides and videos available on the internet? Sparkfun is making Arduino and electronics easier for you with its new book ” The Arduino Inventor’s Guide”!

First of all, the authors of this book , Brian Huang and Derek Runberg, are both working in the department of Education at SparkFun Electronics. Since they are experienced in electronics and educating engineering in schools, they are working towards making electronics easy and fun.

In fact, this 10-project guide is a project-packed introduction to building and coding with Arduino microcontroller. With each hands-on project, total beginners learn useful electronics and coding skills while building an interactive gadgets. Accordingly, this guide is within the introductory-level educational series introduced by No Starch Press and Sparkfun.

“We wanted to share the magic that happens when you build something interactive with electronics,” says Huang. “The goal is to teach real, valuable hardware skills, one project at a time,” adds Runberg.

Content of the book

  • Introduction
  • Electronics Primer
    101 electronics
  • Project 1: Getting Started with Arduino
    Blinking an LED
  • Project 2: A Stoplight for Your House
    A miniature traffic light
  • Project 3: The Nine-Pixel Animation Machine
    An LED screen that displays animated patterns and shapes
  • Project 4: Reaction Timer
    A fast-paced button-smashing game to test your reflexes
  • Project 5: A Color-Mixing Night-Light
    A light-sensitive, color-changing night-light
  • Project 6: Balance Beam
    A challenging ball-balancing game
  • Project 7: Tiny Desktop Greenhouse
    A temperature-sensing mini greenhouse with an automated fan and vent
  • Project 8: Drawbot, the Robotic Artist
    A motorized robot that you can control
  • Project 9: Drag Race Timer
    A racing timer for toy cars
  • Project 10: Tiny Electric Piano
    A tiny electric piano that you can actually play!
  • Appendix: More Electronics Know-How

Reviews

The Arduino Inventor’s Guide will appeal to the gadget freak as well as those who like to put their own spin on things.” —Microcontroller Tips

“This is probably the best Arduino starter book out there! I highly recommend it for every library and classroom.” —Sequential Tart

To sum up, the book is available for $30 on No Starch Press as a printed book and for $25 as an Ebook. In addition, you can check this page for more insights. Also download Project 2: A Stoplight for Your House, and the sketches, templates, and diagrams used in this book.

1Amp Constant Current LED Driver Shield for Arduino Nano

1A Constant current LED driver shield for Arduino Nano has been designed for verity of LED related applications. The shield provides accurate LED current sink to regulate LED current in a string of LEDs or single LED. The LED current is mirrored from the current flowing from the RSET Preset PR1. On board 1W LED is used for testing purpose. External high Wattage LED or multiple LED string can be connected by pulling two wires from the PCB and this shield fit directly on back side of Arduino Nano. Shield also has on board tactile switch connected to Digital D2 pin using pull down resistor if required for any application. On board preset helps to set the maximum constant current. PWM input pin connected to Digital pin D6 of Nano to control the LED intensity. Example code FADE-IN/FADEOUT helps to test the shield.

1Amp Constant Current LED Driver Shield for Arduino Nano – [Link]

Chromatron – Wifi Pixel Controller

Chromatron is an open source Wifi pixel controller designed to make LED pixel projects easy and fun.

Hi, I’m Jeremy! I’ve designed a toolkit for making art with LED pixel strips, and I’d like to share it with you! Chromatron takes custom designed hardware and feature-packed firmware, sprinkles it with some Python, and serves up a delicious new platform to help you transform your world into a psychedelic dreamscape.

How to Select a Voltage Regulator

Sanket @ octopart.com tipped us with his latest blog post about voltage regulators and how to select them.

All electronics projects need power. Power can come from either stored energy in a battery, or directly from mains AC voltage or DC power from renewable sources such as solar energy. Power Management ICs (PMICs) help manage the power requirements in a system including scaling voltages, battery charging, and DC-DC conversion. Choosing the right PMIC can make a difference in whether the final product becomes successful or not.

How to Select a Voltage Regulator – [Link]

“Ultimate Electronics” is a Free Interactive Electronics Textbook

The creator of the CircuitLab simulation software, now used in electronics courses at MIT, CMU, and other top universities, has just released the first few chapters of a new book. It’s called “Ultimate Electronics: Practical Circuit Design and Analysis,” and it’s available free online. It’s interactive because every schematic in the book can be clicked to open it, and many have a simulation that can be run and changed right in the browser. Take a look at: https://www.circuitlab.com/textbook/

Water Splitting With Solar Energy

Using solar energy to split water provides an efficient way for large scale renewable energy conversion and storage. A group of researchers from TUDelft and AMOLF have successfully developed an efficient and stable photo-electrode that could improve water splitting with solar energy.

Decomposition of water using solar energy

This photoelectrode absorbs light and directly decomposes water into hydrogen and oxygen. In addition to the efficiency, the system is also cheap because of using silicon wafers as the light absorbing material.

The Process

Photoelectrochemical (PEC) splitting of water is a direct conversion of solar to chemical energy to produce renewable and clean fuel. The hydrogen, for example, can be used directly in fuel cells, or combined with other molecules to create durable materials.

Together with colleagues from AMOLF (Amsterdam), we have engineered a photo-electrode, a material that absorbs light and directly splits water, that has a very high efficiency and over 200 hours of stability’, says Wilson Smith, Associate Professor in the Department of Chemical Engineering at TU Delft. ‘This is remarkable in a field where people normally show only a few hours of stability.  We use silicon wafers as the light absorbing material, so the photoelectrode is also very cheap.

Researchers had also designed a new insulator layer to stabilize the semiconductor (Si) photo-electrode, while keeping the high efficiency of water splitting by using two metals. This approach known as making a metal-insulator-semiconductor (MIS) junction. It is a simple system that combines the stability and catalysis bottlenecks in photoelectrochemical water splitting.

For more information, the researchers had published this research in Nature Communications.

How To Program ATtiny13/ATtiny13a using Arduino IDE

Despite ATtiny series is considered extremely cheap and useful, still there is a lack of projects and tutorials about it. In this tutorial, you will learn how to start building applications using ATtiny13 microcontroller programmed using Arduino IDE.

First of all, ATtiny13 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny13 achieves throughput approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. After the acquisition of Atmel by Microchip, the new ATtiny13 is still in production.

How To Program ATtiny13/ATtiny13a using Arduino IDE – [Link]

Making A Pickit 3 Clone

Make Your Own Pic Programmer and Debugger. by reviahh @ reviahh.wordpress.com

After using the Microchip tools to program and debug the projects I work on, I wondered about creating my own programming/debugging module that I could put on my own boards – just like Microchip does with their starter kits and such. As I became more interested in that idea, I began to search the web to see if anyone else had already done something similar. Initially, I found lots of posts regarding the 2nd version of the Pickit – the Pickit 2, but not as much regarding the latest version – the Pickit 3 – which is what I need to program the 32 bit pic processors that I am using.

Making A Pickit 3 Clone – [Link]