Soil Moisture Sensor with SD logging

FB0O74GIK8KSP3E.MEDIUM

WojciechM3 @ instructables.com has build an Arduino based soil moisture sensor with character LCD, real time clock and SD card logging.

It can be very helpful with a master degree biotechnology/biology/botanics works, however remember that kind of a project can be only add as a bonus as it is in my Master thesis. Good luck with building it!

Soil Moisture Sensor with SD logging – [Link]

5V Symmetrical Regulated Power Supply

5V_Power_Supply_G003

This Project provides Positive and Negative (Dual Output) 5 V @ 1 A Regulated Power Supply.

Specifications

  • Input 7-0-7 VAC to 12-0-12 VAC or +/- 9 to 18 VDC
  • Output : Dual output ± 5 V @ 1 A regulated low ripple DC voltage
  • Heat-sink for regulator ICs
  • Onboard bridge rectifier to convert AC to DC
  • LED indication for both the outputs
  • Thermal overload/short circuit protection (provided by IC feature)
  • Screw terminal connector for easy input and output connection
  • Filter capacitors for low ripple DC output
  • Four mounting holes of 3.2 mm each
  • PCB dimensions 46 mm x 60 mm

5V Symmetrical Regulated Power Supply – [Link]

Arduino 101 Fundamentals

FAQLWPGIK2V19Y4.MEDIUM

eliesalame @ instructables.com has written an introduction course to programming Arduino. It is focused on those who just starting now in the Arduino world.

It is meant to be a beginners guide that includes detailed explanation about the basic statements and functions. Most of the sketches I use are taken from the Arduino IDE for their simplicity. I wrote this guide when I first started working with Arduino as a way to help me code easier.

Arduino 101 Fundamentals – [Link]

Wearable WiFi Detector


A WiFi (Wireless Fidelity) is a technology that uses the 2.4GHz UHF and 5GHz SHF ISM radio bands to allow devices such as computers, smartphones, digital cameras, tablet computers, etc. to network. Nowadays the WiFi technology is being used by cities to provide free or low-cost Internet access to residents. The WiFi is inexpensive and is easy to setup but it is also unobtrusive. The people may not know that they are in a hotspot unless they open their smartphones or tablets and stream movies on it.

This reference design is a simple circuit that helps WiFi users determine if there is a hotspot nearby. The circuit uses a WiFi chip, a crystal, an SPI flash and some other external components to detect if there is a WiFi network available within the area. The WiFi chip is programmed to spot wireless networks and display the result on a small light emitting diode (LED) connected to one of the GPIO pins of the WiFi chip. The LED will just keep on blinking if there is no wireless network available within the area. As soon as the WiFi chip detects a network, the LED will stop blinking and become steady.

The prototype of this circuit must be in small size so that it is wearable. The WiFi chip and the LED with the battery can be soldered into two different PCBs to make the prototype smaller. The TE Connectivity 87220-8 male and 5-534237-6 female header then connects the WiFi and the LED PCBs. The WiFi chip only consumes small power especially when it is in standby mode. But to conserve power when it is not used, the user can turn OFF the WiFi detector using the TE Connectivity MLL1200S slide switch.

Wearable WiFi Detector – [Link]

LM386 SMD Audio Amplifier Module

LM386_Amplifier_IMG

The Tiny Audio Amplifier MODULE is a good choice for battery operation. It is based on LM386 IC, useful in various applications like robotics, science projects, intercom, FM radio and many more.

Specifications

  • Power Supply 6V-9V
  • 300mW Output @ 8Ohms Load
  • On Board Potentiometer for Audio Level Adjust
  • Header Connecter for Supply, Signal in and Speaker
  • On Board Power LED
  • Input: Standard Audio Signal

LM386 SMD Audio Amplifier Module – [Link]

RELATED POSTS

Arduino IR thermometer using the MLX90614 IR temperature sensor

In this video we learn how to build a very usefull project. An Infrared thermometer, using the MLX90614 IR temperature sensor and the a Nokia 5110 LCD display shield. We are also using an Arduino Uno but you can use any Arduino board you like.

Arduino IR thermometer using the MLX90614 IR temperature sensor – [Link]

DIY Bare Minimum Arduino Mega 2560

FH06U2FIK1FM4UY.MEDIUM

MichaelC349 @ instructables.com has designed an Arduino Mega 2560 board with bare minimum components and small size. The resulting board is bootloaded using an Arduino UNO and an external USB to serial adapter is used to program it.

Personally to be used for robotics projects that require ATmega2560’s 256 KB flash and digital/analog pins, where the size, weight, and USB port location of the original design is not ideal.

DIY Bare Minimum Arduino Mega 2560 – [Link]

ESP8266 Troubleshooting Guide

all_esp_modules_featured

In this article Rui Santos help us solve the main issues that may arise when trying to flash a new firmware or uploading scripts on ESP8266 Wifi module. He discuss about NodeMCU flasher and how to use it successfully and also he discuss about ESPlorer IDE and it’s use.

ESP8266 Troubleshooting Guide – [Link]

Arduino MPPT Solar Charger Shield

20160119_projekte_028

Lukas Fässler has designed a MPPT Solar Charger Arduino Shield and document it on the link below. A Solar MPPT charger is used to convert the solar panel voltage to the optimal voltage for charging a battery in the most efficient way. This way the solar panel works on the maximum power point and thus delivering maximum power to the battery.

The basic idea behind an MPPT solar charger is simple. A solar panel has a certain voltage (in the region of 17 to 18 volts for a 12 volts panel, somwhat dependent on temperature) at which it provides most power. So as long as the battery needs charging, you want to pull just as much current to reach this voltage. But once the battery is full you need to avoid overcharging the battery. So you want to maintain a maximum voltage for your battery (somewhere around 13.8 volts for a 12 volt lead acid battery) and no longer care about the pannel’s voltage.

Arduino MPPT Solar Charger Shield – [Link]