Twiz – Tiny Wireless IMUs

Tiny Wireless IMUs – 100% open & autonomous 9DoF motion sensor using BLE to control anything from your [objects] motion ! by Drix @ hackaday.io:

We looked for tiny, autonomous, easy to use, and 9 Degrees of Freedom IMU, but none of the available wireless motion sensors were affordable enough to really unlock creativity, so we built one.

Twiz – Tiny Wireless IMUs – [Link]

Samba : Set Up Your Raspberry Pi As A Local Network File Server

Samba is the Linux implementation of the SMB/CIFS file sharing standard used by Windows PCs and Apple computers and widely supported by media streamers, gaming consoles, and mobile apps. In this tutorial, you will learn how to use a Raspberry Pi as a file server where you can save backups and share files with all the other computers on your network using Samba.

You need the following things for this tutorial:

  • A keyboard (Wired or wireless)
  • A mouse (Wired or wireless)
  • Raspberry Pi (Model 3B is recommended)
  • A 32GB (or smaller) micro SD card
  • Internet connection (Only to download Samba)

The SD card must have a reasonable amount of free storage space without requiring any extra steps to make it accessible. However, if you want extra storage, simply mount a large USB drive and create a Samba entry for it. If you want to keep your Samba file server compact and portable, install Raspbian on a 128Gb or 256GB SD card. Before purchasing, check online whether the SD card is fully compatible with Raspberry Pi or not.

Install Samba

Samba is available in Raspbian’s standard software repositories. Update your repository index, make sure that the operating system is fully updated, and install Samba using apt-get. Open a Terminal and type:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install samba samba-common-bin

The download and installation process will start and it will take a while depending on your internet speed.

Create A Shared Directory

Now you need to create a shared directory that will be accessible by other PCs/mobiles connected to the same network. You can put it anywhere, but in this tutorial, it will be at the top level of the root file system of the Pi’s microSD card. Type the following command:

sudo mkdir -m 1777 /share

To help prevent the directory from being unintentionally deleted, the above command sets the sticky bit (1) and gives everyone read/write/execute (777) permissions on the shared directory.

Configure Samba

In this step, edit the smb.conf  file to configure Samba to share the selected directory and allow users to perform various actions like read, write etc. Open the smb.conf file using the following command:

sudo leafpad /etc/samba/smb.conf

You need to add the following entry:

[share]
Comment = Pi shared folder
Path = /share
Browseable = yes
Writeable = Yes
only guest = no
create mask = 0777
directory mask = 0777
Public = yes
Guest ok = yes
Configure Samba On Raspberry Pi
Configure Samba On Raspberry Pi

As per the above configuration, anyone can read, write, and execute files in the shared directory, either by logging in as a Samba user or as a guest. Just omit the guest ok = yes line if you don’t want to allow guests. To share a larger external hard disk, simply create a smb.conf entry for the path you want to share across the network (here the external hard disk).

Create A User & Start Samba

Everything is configured and now it’s time to create a user. To set up a password for the user, enter the following command:

sudo smbpasswd -a pi

Then set a password as prompted. It’s recommended that the password should be different from your Pi’s login password. Finally, restart the Samba and set it to start automatically when the Raspberry Pi starts up. Enter the following command:

sudo /etc/init.d/samba restart

Once you’ve made sure that you can locate your shared folder on the network, you can safely disconnect the mouse, monitor, and keyboard from your Pi and just leave it running as a headless file server.

5V to Dual 12V Step Up DC-DC Converter Using LM2588-ADJ

Lots of op-amp based circuits require dual (symmetrical) power supply. This tiny circuit is a simple solution which provides +/-12V DC 300mA from single 5AV DC   input. The board is based on LM2588-ADJ IC from Texas instruments. Step up from 5V to dual 12V is the best part of the circuit since 5V is easily available.

The LM2588-adj regulator IC specifically designed for fly back, step-up (boost) and forward converter applications, this regulator are cost effective and simple to use due to minimum number of external components.  The power switch is a 5A NPN device that can stand-off 65V. Protecting the power switch are current and thermal limiting circuits, and an adjustable frequency that can be programmed up to 200Khz. other feature include soft start mode to reduce in rush current during start up, and current mode control for improved rejection of input voltage and output load transient and cycle-by-cycle current limiting.

5V to Dual 12V Step Up DC-DC Converter Using LM2588-ADJ – [Link]

First Thoughts on the New ROCK64 Board

Alasdair Allan @ hackster.io writes:

The original Pine A64, hailed by many as a “Raspberry Pi killer” during its crowdfunding campaign, shipped to backers to somewhat poor reviews back in 2015. However after a lot of work by the manufacturer, software support for the board is now much improved. The recent release of the Pinebook by the same team, despite some initial teething problems, proved to be a solid product for the price. So the upcoming release of their new ROCK64 board could well prove rather interesting.

First Thoughts on the New ROCK64 Board – [Link]

Prosthetics Feeling Is Now Possible With This Implantable Chip By Imec

Imec, the world-leading research and innovation hub in nano-electronics and digital technology, announced last month its prototype implantable chip that aims to give patients more intuitive control over their arm prosthetics. The thin-silicon chip is said to be world’s first for electrode density. Creating a closed-loop system for future-generation haptic prosthetics technology is the aim of researchers.

What is special about this chip?

The already available prosthestics are efficient and have their own key features; like giving amputees the ability to move their artificial arm and hand to grasp and manipulate objects. This is done by reading out signals from the person’s muscles or peripheral nerves to control electromotors in the prosthesis. Good news is that revolutionary features are coming! The future prosthetics will provide amputees with rich sensory content. This can be done by delivering precise electrical patterns to the person’s peripheral nerves using implanted electrode interfaces.

The goal behind working on this new technique is to create a new peripheral nerve interfaces with greater channel count, electrode density, and information stability according to Rizwan Bashirullah, director of the University of Florida’s IMPRESS program (Implantable Multimodal Peripheral Recording and Stimulation System)

Fabricated amazingly in a small scale!

A prototype of ultrathin (35µm) chip with a biocompatible, hermetic and flexible packaging is now available. On its surface are 64 electrodes, with a possible extension to 128. This large amount of electrodes is used for fine-grained stimulation and recording. As the short video shows, the researchers will insert the package and attach it to a nerve bundle using an attached needle which will give better results compared to other solutions usually wrapped around nerve bundles.

“Our expertise in silicon neuro-interfaces made imec a natural fit for this project, where we have reached an important milestone for future-generation haptic prosthetics,” commented Dries Braeken, R&D manager and project manager of IMPRESS at imec. “These interfaces allow a much higher density of electrodes and greater flexibility in recording and stimulating than any other technology. With the completion of this prototype and the first phase of the project, we look forward to the next phase where we will make the prototype ready for long-term implanted testing.”

The Defense Advanced Research Projects Agency’s (DARPA) Biological Technologies Office sponserd this work of University of Florida researchers under the auspices of Dr. Doug Weber through the Space and Naval Warfare Systems Center. For more details about this topic check this article.

Meet Bean: The Ultimate Consumer SLA 3D Printer

Kudo3D Inc. is a startup company dedicated to bringing 3D printing technologies to consumers. It released the first generation 3D printer, the Titan 1, via a very successful Kickstarter campaign in 2014. Since then, they launched their second generation printers, the Titan 2 and Titan 2 HR. Now, they are releasing Bean 3D printer, the ultimate SLA printer for consumers.

Bean 3D printer  is a high resolution, affordable, and reliable resin SLA printer created with the consumer in mind. The quality  of resin printers with the affordability of FDM printers are the key features of Bean! The stylish 3D printer is green from inside and outside; its green cover makes it look so elegant and the embedded LEDs allow a greener energy consumption and longer lifetime. It is also affordable since the team had combined their PSP (passive self-peeling) technology with an ultra-high resolution LCD panel bringing the cost down.

This 3D printer has dimensions of 8 inch x 8 inch x 16 inch (20 cm x 20 cm x 40 cm) and  it weighs only 15 pounds (6.67 Kg), thus the Bean fits well in any office, studio and workshop environment. Bean can print at 50 micron XY resolution (capable of 10 microns Z layer thickness) with a maximum printing area of 2.7 inch x 4.7 inch (12.1 cm x 6.8 cm) and a build height of 5.9 inch (15 cm).
Jewelry printed by Bean

What is special about this 3D printer?

“Instead of using laser or DLP to generate patterns, the Bean has a high resolution 2K LCD panel coupled with a purple 405nm LED lamp to project slices of a 3D model onto the floor of resin container. The average power consumption of the Bean is only 50W which is one of the lowest.”
They developed a special 3DSR high resolution resins and have thoroughly formulated them for different applications.
You can get your own Bean now from the outstanding Kickstarter campaign for $399 including a 250mL bottle of resin, a resin container and a starter kit.
The campaign still has 29 days to go and it has already achieved 883% of its funds! Check out the campaign video here.

Ultra-low-noise, high PSRR, 0.5A negative rail LDO

By Graham Prophet @ eedesignnewseurope.com:

Analog Devices has added to its range of linear voltage regulator chips intended for stabilising supply rails to the most noise-sensitive active devices such as ADCs, DACs and precision/instrumentation amplifiers, that operate from negative voltage rails.

Ultra-low-noise, high PSRR, 0.5A negative rail LDO – [Link]

DIYODE—New Magazine for Electronics Enthusiasts

Interest in magazines has declined in the age of social media and blogging. However, some people are somewhat skeptical about the future of this industry, especially the printed magazines.

But surprisingly, a story published on EEVBlog forum about a new 100-page-long Australian magazine called DIYODE targets electronics enthusiasts with a printed and a digital edition seems to grab attention.

 

The first issue will be published on July 1st, 2017, and preorders are open for the first issue.
$7 for digital edition, and $10 for the printed one. Another option can save you some money is the annual subscription.
The new magazine is open for electronics hobbyist to submit their project ideas. If they like it, they will publish it. You can submit it using DIYODE website.

Sample of DIYODE content. Image adapted from an EEVBlog youtube video
Sample of DIYODE content. Image adapted from an EEVBlog YouTube video

The content will be around: community-submitted projects, DIY new projects, fundamental knowledge tips and thought-provoking ideas. Anyway, David from EEVBlog reviewed an exclusive early copy of it. You can watch the video to see some actual content before subscribing to the new magazine.

 

WD PiDrive Node Zero – A low-energy hard drive coupled with a Pi Zero

The WD PiDrive Node Zero is a compact, all-in-one unit that includes a WD PiDrive connected to a Raspberry Pi Zero through a custom adapter board with 2 USB ports. This unit offers an affordable, low-power storage node with an onboard computer. Suitable for data logging, offline analytics, and applications where stand-alone operation are required due to network or privacy-related limitations restrictions.

The PiDrive is Western Digital Corporation‘s low-energy hard drive, designed particularly for the Raspberry Pi. It replaces the regular SATA III port with a micro-USB connection. It’s a compact combination of USB hub, Pi Zero and 2.5″ hard drive that could easily be VESA (Video Electronics Standards Association) mounted behind a screen or tucked away in a neat case.

WD PiDrive Node Zero Exploded View
WD PiDrive Node Zero Exploded View

The WD PiDrive Node Zero comes with a 4GB microSD preloaded with a customized version of the popular NOOBS (New Out of Box Software). On first boot, Raspbian gets installed in the primary hard disk and not on the 4GB microSD. The SD card boots the device, but you run it from the hard drive. So you do not have to switch between the two drives.

Western Digital suggests this device as:

Ideal for video recording, data logging, offline analytics, and applications where stand-alone operations are needed because of network limitations or privacy/security restrictions.

As the Pi Zero has neither onboard WiFi module nor ethernet connector, you have only two options for taking a PiDrive Node Zero online. Either add a USB-to-Ethernet adapter and hook up to a wired network or use a USB WiFi dongle to access WiFi connection. The newer Pi Zero W has onboard WiFi chip. So, you can replace the Pi zero of WD PiDrive with a Pi Zero W to gain easier WiFi access.

The WD PiDrive Node Zero kit comes with the following:

  • WD PiDrive 314GB
  • Raspberry Pi Zero
  • USB Adapter board (PCBA) with full sized ports
  • 4GB microSD card (with preloaded software)
  • Mini HDMI adapter cable
WD Pi Drive Node Zero Kit
WD Pi Drive Node Zero Kit

Once you are connected to a network, you can make amazing DIY projects like data logging weather station, JukeBox with something like Volumio or PiMiusicBox for streaming your whole music collection, mini-DLNA and Samba file server, mobile backup device and much more.

Conclusion: Out of the box, this product runs fantastically. The inclusion of the customized NOOBS installer was a smart move and makes installation a lot easier. Disassembling the unit is not at all user-friendly and the lack of networking option is a limiting factor. But it remains a charming and handy piece of kit.

New Batteries with 3 & 15 Times Energy Density

With the rapid growth of battery-based devices and tools, efficient energy storage systems are becoming more and more important. Of course there are many researches running around the world working on novel battery technologies. Two new cell technologies are working to deliver energy density of 3 and 15 times of conventional lithium cells.

The first is a group of scientists from Rice University, they solved the dendrite problem of commercial lithium-ion batteries providing a three times capacity rechargeable lithium metal battery. Dendrites are whiskers of lithium that grow inside batteries, and they can cause fires like those in the Samsung Galaxy Note 7. They are considered a major issue for next-generation lithium batteries.

Lithium metal coats the hybrid graphene and carbon nanotube anode in a battery created at Rice University. The lithium metal coats the three-dimensional structure of the anode and avoids forming dendrites. Courtesy of the Tour Group.
Lithium metal coats the hybrid graphene and carbon nanotube anode in a battery created at Rice University. The lithium metal coats the three-dimensional structure of the anode and avoids forming dendrites. Courtesy of the Tour Group.

The main idea of the research is to coat high conductive hybrid graphene and carbon nanotubes with metallic lithium. These low density and high surface area nanotubes have space for lithium particles to slip in and out as the battery charges and discharges.

“Lithium-ion batteries have changed the world, no doubt, but they’re about as good as they’re going to get. Your cellphone’s battery won’t last any longer until new technology comes along.”  – James Tour, leader of the research team

A prototype of a battery with 3.351 Ah/g capacity, retains 80% of the original capacity after 500 charge cycles.

In Japan, and especially at the NIMS (National Institute for Materials Science), another research is working to create a Lithium-air battery that has the highest theoretical energy density because it uses oxygen in air. Its capacity reaches 15 times of the conventional Lithium batteries.

The electrode material has an enormous surface area thanks to ​​carbon nanotubes. Researchers achieved 30 mAh/cm² capacity in the lab, which will be amazing if realized in a commercial product. Work is ongoing to produce real practical samples with high energy density and a system to filter impurities from the air.

Source: Elektor