Unlimited Source of Energy- As good as it Sounds

In recent decades, humans realized that fossil fuels are a finite source of energy that not only pollutes the environment but is also difficult to extract (it can even be dangerous). Because of this, there has been a huge increase in the development of new ways to extract energy from other sources such as solar, wind, geothermal etc. Following this trend, researchers at King Abdullah University of Science and Technology have developed a diode that generates electricity using infrared energy.

Not all sources of energy have been exploited by humans, and infrared energy is one of them. This was mainly because of the small wavelength of these waves which made it hard to harvest energy. Unlike, solar power or wind, infrared energy can be harvested 24 hours a day because it does not depend on day and night or weather conditions, and unlike solar power it is not limited only to the visible spectrum.

The diode works by using a rectifier (semiconductor diode) to transform alternating signals received by special antennas into electric current. The diode will harvest infrared radiation and waste heat from industrial processes and does this by transitioning quadrillionth- of- a- second wave signals into useful electricity.

The project leader Atif Shamim said :

There is no commercial diode in the world that can operate at such high frequency

that’s why they decided to use quantum tunneling to solve the problem. They used a bowtie- shaped Nano-antenna holding the insulator film between two metallic arms to generate the fields needed for tunneling. One of the researchers mentioned that one of the biggest challenges was working in a nanoscale that require precise alignment for it to work.

These new methods might be still less efficient than fossil fuels, but with the development of the technology used they could improve and be just as efficient, or even more. Additionally, the energy provided by the device is clean and comes from a renewable source. Infrared radiation is emitted all around us at all times and its estimated to be millions of Gigawatts per second. The device has already been tested and it successfully harvested energy solely from radiation and not from thermal effects, and as the project leader said “This is just the beginning- a proof concept”.


Phantom v2640 – The World’s Fastest High Speed Camera Captures 303,460 fps

Vision Research‘s latest addition is the new Phantom v2640 model to its array of products. This is seemingly the world’s fastest video capturing camera, able to record up to 11,750 fps in color and HD or 25,030 fps in monochrome. The maximum resolution is 2,048 x 1,952 pixels with up to 6,600 fps.

Phantom v2640 - the world's fastest video camera
Phantom v2640 – the world’s fastest video camera

At maximum resolution, it can only manage 6,600 images per second but this is enough to provide smooth x100 slow motion replay. HD (1920×1080) mode offers reduced resolution but accomplishes an impressive 11,750 fps. Things can get really breathtaking in monochrome ‘binning mode’ where up to 25,030 fps are possible. Playing the footage at the standard 24 fps gives out at more than a thousand times slow motion.

Apart from scientific applications and materials research, the capabilities of the camera would make it valuable for recording low-frequency sound events in high resolution. One obvious application could be making it a useful tool to study the movement of a bass speaker or subwoofer cone to determine membrane stability and surface resonances. Although it would not be quite fast enough to do the same job for tweeters operating at the upper limits of audibility. There is a special very high-speed mode in the camera which pushes up the frame rate up to 303,460 fps, providing images with a 1792 x 8 pixels format. This would be enough to record tweeter membrane movement but only along a very thin slice of the motion.

This camera is a technical marvel. A pixel rate of up to 26 Gpx/second suggests there are some fairly extreme high-speed electronics, resulting in a data rate reaching way in the GB/s range. As a result, the camera requires a massive internal frame-buffer to record footage of more than just a few milliseconds. Regards this, there is up to 288 GB of RAM installed which is enough to capture at least 7.8 seconds of footage. There is also a fast Ethernet interface of 10 Gb/s and other alternative data transmission connections. Battery operation is available but not necessarily too practical because the camera draws 280 Watts of power. Availability and pricing information is not available yet.

TE Connectivity releases over 25,000 new digital models in collaboration with SnapEDA

Engineers can now easily design-in a wide variety of components with free symbols & footprints

SCHAFFHAUSEN, Switzerland and SAN FRANCISCO, CA (February 14, 2018) — TE Connectivity (TE), a world leader in connectivity and sensors, and SnapEDA, the Internet’s first parts library for circuit board design, are collaborating to make more than 25,000 new digital models available to electronics designers, helping them bring their products to market faster.

Traditionally, designers have spent days creating models for each component in their designs, a tedious and time-consuming process. Some components, such as connectors, are particularly challenging to create models for due to their non-standard shapes, pitches, pads, and cutouts. (more…)

Building a DSLR Camera Wireless Controller

Lenin @ movingelectrons.net build a DSLR camera wireless controller and documented the process. He writes:

I’ve been experimenting with time-lapse shots for a while now. Unfortunately, time-lapse shooting options on most DSLR and mirrorless cameras are somewhat limited. At the time of this writing, Sony doesn’t even include the feature on their high end cameras by default (you need to buy an “App” and download it to the camera).

Some time ago, I posted the setup I had been using for shooting time-lapses using a Raspberry Pi, a portable battery and a USB cable. It got the job done, but using a Raspberry Pi as a time-lapse controller seems a bit overkill. I also wanted to get rid of the cables and the need for carrying around a big battery pack. Thus, I came up with this little device.

Building a DSLR Camera Wireless Controller – [Link]

HiFive Unleashed – The First RISC-V-based Linux development board

RISC-V is an open specification of an Instruction Set Architecture (ISA). That is, it describes the way in which software talks to an underlying processor – just like the x86 ISA for Intel/AMD processors and the ARM ISA for ARM processors. Unlike those, however, the RISC-V ISA is open so that anyone can build a processor that supports it. Just as Linux revolutionize the software world, RISC-V could create a substantial impact on the hardware world. This open-source chip project is might just go out to break the dominance of proprietary chips offered by Intel, AMD, and ARM.

Hi-Five Unleashed-board

Silicon Valley-based company SiFive has released the world first RISC-V based Linux development board called Hi-Five Unleashed. SiFive which has previously released the HiFive1, a RISC-V-based, Open-Source, Arduino-Compatible Development Kit. The HiFive Unleashed is powerful enough to run Linux distributions.

HiFive Unleased Block Diagram

Hi-Five Unleashed was designed around the RISC-V based, quad-core, 1.5GHz U540 SoC (Freedom U540). The Freedom U540 is the first multi-core SoC featuring the open source RISC-V ISA with 4x 1.5GHz “U54” cores and a management core, fabricated with TSMC’s 28nm HPC process, and also the first to offer cache coherence. The U54-MC Core’s high-performance and flexible memory system make it ideal for applications such as AI, machine learning, networking, gateways, and smart IoT devices. It has no GPUs or other coprocessors, but the open source hardware design is intended to encourage third parties to collaborate to develop one.

The Hi-Five Unleashed is a minimalist board that uses one Freedom U540 paired with 8GB DDR4 ECC RAM, as well as 32MB Quad SPI Flash, a microSD card slot for external storage, a Gigabit Ethernet port, and an FMC connector for future expansion cards. The development board is still barebone for now and mostly intended for developers and not the general public; it lacks hobbyist helpful resources like a video output and USB support, none of those are available on the board.

The following are some of the HiFive Unleashed specifications:

  • SoC – SiFive Freedom U540 with 4x U54 RV64GC application cores @ up to 1.5GHz with Sv39 virtual memory support
    • 1x E51 RV64IMAC Management Core
    • 2 MB L2 cache
    • 28 nm TSMC process
  • System Memory – 8GB DDR4 with ECC
  • Storage –  32MB Quad SPI Flash from ISSI
    • MicroSD card for removable storage
  • Connectivity – Gigabit Ethernet port
  • Debugging – Micro USB port connector to FTDI chip
  • Expansion – FMC Connector for future add-in cards
  • Misc – On-off switch, various configuration jumpers
  • Power Supply – 12V DC input

The board is currently available for order at Crowd Supply for $999 and is expected to ship on June 30th. An earlier access board goes for $1250, which will ship on March 31st. RISC-V has grown from an academic project which first started in 2006 at UC Berkely, and now to a welcome, acceptable alternative to existing ISA and a potential game-changer in the long run.

In the future, we are not only going to build powerful open source based system but also understand their internal working and avoid something like the Spectre and Meltdown bugs that affected the likes of Intel processor.

Arduino UV Meter using the UV30A Ultraviolet Sensor

Ultraviolet rays, also known as UV for short are rays emitted by sun. Due to the depletion of the ozone layer, these rays tend to get to extreme levels that could lead to sunburns etc for those under it, that’s why daily and hourly forecast of the UV index is always available to help people keep track and stay safe. For monitoring purposes, why not own a personal UV meter?

Today, we will build a UV meter using the Arduino and the ultraviolet sensor (UVM30A) with a Nokia 5110 LCD display as the display for the meter. The Nokia 5110 is used to display the UV index which is an international standard unit for the intensity of ultraviolet rays from the sun being experienced in a particular place and at a particular time.

Arduino UV Meter using the UV30A Ultraviolet Sensor – [Link]

150VIN & VOUT Synchronous 4-Switch Buck-Boost Controller with Integrated Switching Bias Supply

Analog Devices announces the Power by Linear™ LTC3777, a 150V high efficiency (up to 99%) 4-switch synchronous buck-boost DC/DC controller, which operates from input voltages above, below or equal to the regulated output voltage. Its 4.5V to 150V input voltage range operates from a high input voltage source or from an input that has high voltage surges, eliminating the need for external surge suppression devices, ideal for transportation, industrial and medical applications.

To prevent high on-chip power dissipation in high input voltage applications, the LTC3777 integrates a low quiescent current high efficiency switching bias supply for its internal power consumption. The output voltage of the LTC3777 can be set from 1.2V to 150V at output currents up to tens of amps, depending on the choice of external components. Output power up to 500W can be delivered with a single device. Higher powers can be achieved when multiple circuits are configured in parallel. The LTC3777’s powerful 1.5Ω N-channel MOSFET gate drivers can be adjusted from 6V to 10V, enabling the use of logic-level or standard-threshold MOSFETs.

The LTC3777 employs a proprietary current mode control architecture for constant frequency in buck, boost or buck-boost modes. The operating frequency can be synchronized to an external clock from 50kHz to 600kHz, while an input/output constant current loop provides support for battery charging and overload protection. The user can select either forced continuous mode or discontinuous mode to maximize light load efficiency. Additional features include seamless transfers between operating regions, a power good output voltage monitor, adjustable soft-start and input overvoltage lockout, and output voltage disconnect during shutdown.

The LTC3777 is available in a 48-lead e-LQFP package with pin skipping for high voltage spacing. Extended and industrial versions are available from –40 to 125°C.

Summary of Features: LTC3777

  • 4-Switch Synchronous Current Mode Buck-Boost Architecture
  • Operation with Input Voltages Above, Below or Equal to the Output Voltage
  • 4.5V to 150V Input Voltage Range
  • 1.2V to 150V Output Voltage Range
  • Up to 99% Efficiency
  • Integrated Switching Bias Supply
  • Input or Output Average Current Limit
  • Adjustable 6V to 10V MOSFET Gate Drivers
  • Compatible with Logic-Level or Standard-Threshold NMOS
  • 500 Watts Output Power Capable with a Single Device
  • Fixed Synchronizable Operating Frequency from 50kHz to 600kHz
  • Output Voltage Disconnect from VIN During Shutdown
  • Adjustable Soft-Start
  • ±1% Reference Voltage Accuracy over -40°C to 125°C
  • 48-Lead e-LQFP Package with High Voltage Pin Skipping


SocioNext MN87900 is a Single-Chip 24 GHz Radio Wave Sensor for the Internet of Things

The Socionext MN87900 from Socionext is a powerful and low-power single-chip microwave sensor at 24GHz with sophisticated sensing capabilities like motion detection, speed and direction detection and so many, that can quickly find applications in the Internet of Things sensing applications.

Socionext MN87900

Unlike PIR sensors like the popular HR-SR501 that can detect motion to about 3 meters at about 120 angles and based on the concept of detecting infrared energy emitted by an object while attempting to determine if it’s a motion or not, the Socionext MN87900 is a microwave sensor that sends out microwave signals and detects the bounce back signals to decide if it’s a motion or not. Microwave sensor uses what we call the Doppler’s Effect concept.

SocioNext MN87900 is a 24 GHz and very tiny, measures about 12mm x 7mm x 1mm making it ideal for the small size requirement in the most Internet of Things application and other applications in the areas of smart-home, automotive or driver assistance systems, medical applications, and many more. Based on a single-chip radio frequency IC (RFIC) that offers a multi-mode sensing capability for detecting stationary or moving objects and measuring the distance and direction of movement, including whether an object is approaching or leaving. This multi-mode sensor capability gives the device ability to re-adapt its functionality to different case scenario without making any single hardware changes.

The RFIC can be used to sense very slow movements (like breathing and heartbeats), and even detect the movement of multiple objects within a 160-degree radius to a distance of about 8 meters away. With slight modification, the RFIC can reach a range of up to 30 meters.

Apart from having powerful sensing capabilities, it is also power friendly. During continuous operation, the sensor can take up to 500mW, but this can be reduced to an intermittent operation where for example, during a one-sixth burst, the sensor can take about 80mW, a very drastic reduction in power. The MN87900 can pass through fabric or resin like materials, and unlike camera-based people detecting applications, the MN87900 doesn’t need to capture or display images to identify people or objects which is handy for privacy-concerned applications.

The MN87900 supports SPI as a form of interface to microcontroller system. Along with the hardware, a simple API system was developed to support the designs of CW, FSKCW, and FMCW mode capabilities to provide distance, direction, and relative velocity.

The following are the SocioNext MN87900 key specifications:

  • Sensing Modes – CW, FSKCW, FMCW (moving or stationary)
  • Detection
    • Motion direction – approaching or leaving
    • Motion speed – up to 200 km/h
    • Range – 0.15 to 8 meters 80°@-3dB, expandable to 30 meters
  • Variable frequency width –  24.15±0.1 GHz
  • Host Interface – SPI
  • High sensitivity – -110dBm
  • Transmission Power: 0.8mW
  • Fast frequency pull-in: 100 µs
  • Automatic adjustment: Built-in initial adjustment function (e.g. adjustment of RC filtering)
  • Power supply voltage: 2.5V
  • Current consumption: 200mA
  • Module size: 12mm x 7mm x 1mm
  • Weight – 145 mg
  • Temperature Range – -40°C to 85°C

The module pricing is currently not available, and more information about the product can be found here.

CAP-XX Thinline Supercapacitors Power Vibration Alerts

CAP-XX (LSE:CPX), developer of supercapacitors that deliver peak power to support or replace batteries, today announced that Spire has incorporated CAP-XX Thinline supercapacitors into the new Spire Health Tag to provide the peak power needed for delivering real-time wellness vibration alerts to consumers. Offloading this peak power role to the thin, flat supercapacitor allows Spire to keep the battery small to achieve the ultra-thin form factor of its new wearable fitness biosensor that attaches to clothes once, can be washed as normal, and needs no charging. Press release: https://www.webwire.com/ViewPressRel.asp?aId=216739. Spire will demonstrate its Spire Health Tag at CES booth #43706. (more…)

Designing a Small Footprint, Low Profile 5v to 170v Nixie Tube Power Supply

Nixie Tubes are cool retro looking decimal digit displays useful for many modern DIY projects like the venerable Nixie Tube digital clock.   The Nixie Tube, invented in the 1950’s, can provide a great fusion of old display technology with new innovations.  Unfortunately, one major difficulty in using them is that Nixie tubes need voltages up to 170V to energize.  While this voltage can be made several ways, a convenient way and the subject of this blog is to generate this voltage from a 5v supply.  This will allow the use of the same 5v supply used to power the Raspberry Pie, an ESP8266, an Arduino or another microcontroller that controls the display or IOT project.

Designing a Small Footprint, Low Profile 5v to 170v Nixie Tube Power Supply – [Link]