USB LCD Controller

This project is a USB Generic Human Interface Device (HID) device based on a PIC microcontroller. It is a USB interface for alphanumeric LCD display where the user as desired can program it. USB interface is implemented by using PIC18F2550 microcontroller ideal for low power (nanoWatt) and connectivity applications that benefit from the availability of three serial ports: FS-USB (12 Mbit/s), I2C and SPI (up to 10Mbit/s) and an asynchronous (LIN capable) serial port (EUSART). Large amounts of RAM memory for buffering and enhanced FLASH program memory make it ideal for embedded control and monitoring applications that require periodic connection with a (legacy free) personal computer via USB for data upload/download and/or firmware updates.

The hardware design is extremely simple. It can be build using the supplied PCB artwork or on a stripboard or breadboard. The circuit consists of a PIC18F2550 with a 20Mhz resonator and the required components for the LCD screen and the USB. The display is connected to the controller board using single strand wire. In addition, the contrast control potentiometer is placed underneath the board to allow easy adjustment after the LCD screen has been mounted.

USB LCD Controller is definitely useful since it can view various types of information taken from the PC such as temperature, time/date, MP3 song titles, emails, RSS feeds, all that LCD Smartie or other program supports. This provides ease in reading as well as accessing emails and songs in the playlist. Furthermore, the device can be easily constructed and reprogrammed, making it favorable to the users.

USB LCD Controller – [Link]

ESP8266 ESP-03 Dev Board


by Nathan Chantrell:

This is a small dev board I designed to make experimenting with and deploying the ESP8266 ESP-03 modules a bit easier. As well as breaking out all the pins to 2.54mm headers it has a position to fit either a DS18B20 temperature sensor or a DHT22 temperature/humidity sensor plus the required pull up resistor. It can be powered from 3.3V or 5V+* if the regulator is fitted and there is a footprint for a micro USB connector if required.

ESP8266 ESP-03 Dev Board – [Link]

Mini weather station


by indigod0g @

In this project, we will be making a mini weather station that measures temperature and humidity and transmits them wirelessly to a ground station, which displays the readings on an LCD display!

It’s a fairly easy project and can be used either on its own or part of something bigger.

Mini weather station – [Link]

DragonBoard™ 410c – The Dragon Is Coming


Smaller than a standard playing card, the DragonBoard™ 410c packs a lot in a tiny footprint, including a quad-core 1.2Ghz Snapdragon 410 processor, 1GB RAM, 8GB eMMC storage, Wifi, GPS, and Bluetooth.

The DragonBoard™ 410c offers a fully integrated solution of hardware and software that is designed to erase technical limitations and offer unparalleled versatility for any project.

The DragonBoard™ 410c was designed to inspire the limitless possibilities of your imagination. Don’t be afraid to think big.

Subscribe to receive important board updates and news.

DragonBoard™ 410c – The Dragon Is Coming – [Link]

EEVblog #746 – Sharp X68000 Retro Computer Teardown

What’s inside the a 1987 vintage Sharp X68000 personal computer / gaming system from Japan?
Sold exclusively in Japan from 1987 to 1993 this 10MHz 68000 based boasted graphics capability superior to the Amiga and Atari ST. The powerful graphics enabled pixel-perfect ports of clasic games arcade games, and the machine was highly sought after by gamers. Running a custom operating system called Human68K, it even had 3D goggle support.

EEVblog #746 – Sharp X68000 Retro Computer Teardown – [Link]

Things heat up for self-destructing electronic devices


by Darren Quick @

Expanding on previous research into electronic devices that dissolve in water once they have reached the end of their useful life, researchers at the University of Illinois have developed a new type of “transient” electronic device that self-destructs in response to heat exposure. The work is aimed at making it easy for materials from devices that usually end up in landfill to be recycled or dissolved completely.

The research involved a group led by aerospace engineering professor Scott R. White teaming up with John A. Rogers, who previously led work in the development of transient electronics that biodegrade in water. These previous devices dissolved in water after a predetermined period of time, which was related to the thickness of outer protective layers encapsulating the actual electronics. But using heat as a trigger has now enabled the creation of electronic devices that can be prompted to self-destruct on demand.

Things heat up for self-destructing electronic devices – [Link]

Intelligent 4-Cell Lithium Battery Management with CAN/LIN Interface

This design is a battery management circuit, which involves the use of CAN/LIN interface. The system addresses the matter about managing rechargeable batteries. This design features an 8-output hardware configurable, high side/low switch with 16-bit serial input control using the serial peripheral interface (SPI). Two of the outputs are directly controlled using a microcontroller which are applicable in pulse-width modulation. The design also features high-speed CAN interface that is use to convert digital protocol information into an analog CAN communication.

The RD9Z1-638-4Li reference design is a Battery Management System (BMS) for 4-Cell Li-Ion battery applications featuring the MM9Z1_638 Battery Sensor Module. The RD9Z1-638-4Li is built to demonstrate the product capabilities in a 4-cell Li-Ion application where high EMC performance is required to obtain high accuracy measurements on key battery parameters. The board features an 8-pin standalone CAN transceiver to interface with others modules. Very high EMC robustness and performances are achieved by the Freescale MC33901 CAN High-Speed Transceiver. For cell balancing function and general purpose switches, the board features the Freescale MC33879 Configurable Octal Serial Switch.

The design is useful to automotive applications such as engine management, climate controls, communications and safety systems. The circuits function is suitable for a hybrid electric vehicle which monitors the condition of individual cells which make up the battery and maintains all the cells within the operating limits. It also provides information on the state of charge (SOC) and state of health (SOH) of the battery.

Intelligent 4-Cell Lithium Battery Management with CAN/LIN Interface – [Link]

Find the right solder for you


From a wide offer of solders from company Stannol, it´s easy to choose the most suitable type meeting your demands.

The solder matters, it is an undisputable fact confirmed daily in a development and production of electronics. Hand soldering of prototypes, automated machine soldering, soldering of small SMT components or on the in contrast soldering of big joints of massive connectors, rework, … all that wants a solder optimized for a given usage.
As we know, features of a solder wire are determined by an alloy itself (PbSn xx, SnAg xx, …) but in a considerable extent also a flux used. A flux has a big influence mainly on a soldering process, spreading of solder (often even on partially oxidized surfaces), spitting at hand soldering, etc. That´s why despite of often similar specification (according to datasheets), it is still possible to see considerable differences among solders after all. Besides the most important parameters like composition of alloy and flux properties, some features (like spitting and solder spreading) can be really evaluated only at working with a given type.

Over 130-years experience of German company Stannol give a guarantee, that in their portfolio can be found a type suitable even for your work. In a Stannol catalogue can be found favourite “universal” types suitable for the most types of works in electronics and electrotechnics (for example HS10, HF32, Kristall 400) but also specialized types suitable even for soldering of poorly solderable surfaces.

The principle of Stannol products marking is in it, that they are marked by a flux type (HS10, HF32,…) and by an alloy used (Snxx, SnPb,…). A solder wire is available in many combinations flux / alloy , that´s why it is suitable look at their properties in detail and then to choose a suitable type. On stock we keep the most favorite types with fluxes HS10, HF32 or 2630, suitable for majority of joints.

  • HS10 – no-clean flux containing halides, based on a natural resin (colophony). Outstanding properties regarding spreading and electrically safe residues. The flux is non-corrosive on non-ferrous materials. The most popular type for electronic industry.
  • HF32 no-clean halide-free flux with an activated resin (colophony). Outstanding combination of high activity, good wetting properties and small amount of residues. Residues are transparent, hard, dry and non-corrosive. Very suitable even for SMT components, high reliability of joints. Special version HF32 SMD features even lower flux content and leaves minimum residues, that´s why it´s very suitable even for rework, manual adding of components to PCB and similar.
  • 2630 – the most active no-clean flux containing halides. Usable even on places where HS10 is not sufficient. Ideal for surfaces with poor solderability as well as for soldering of bigger joints (thicker copper wires etc.).

Upon request, we´re able to provide you with another types from Stannol production, for example Kristall 400 – no-clean halide-free flux with synthetic resins, with transparent residues and good activity, able to provide excellent soldering results. In general, fluxes, which contain halides are more active and at soldering they feature better wetting. On the other side halide-free fluxes are more safe in respect of possible corrosion around a solder joint and modern fluxes already have very good wetting properties. Normally, neither halide fluxes marked as “no-clean” don´t cause corrosion around a solder joint but at certain circumstances (for example devices intended for very humid conditions) it may be necessary to wash soldered joints from flux residues.

Detailed information will provide you the attached table as well as Stannol catalogue, overview of Stannol soldering materials, overview of Stannol solder wires and overview of soldering fluxes standards.

Find the right solder for you – [Link]

Extending Battery Life in Wearable Designs


by Steven Keeping @

The wearables market is booming. Statistics aggregator web portal Statista, notes that the global market will be worth over $7 billion this year and $12.6 billion by 2018.

Although the potential rewards are high, this is not an easy market to enter. Designing smart watches or fitness bracelets is tough; consumers expect lots of functionality, smartphone connectivity, compact form-factor, light weight, and long battery life. The introduction of highly integrated, ultra-low-power microprocessors and wireless chips has eased the design process, but squeezing out all of the battery’s power remains key to a wearable product’s success.

This article takes a look at how silicon vendors help wearables designers extend battery life by offering power-frugal displays, microcontrollers (MCU), silicon radios, and power-management chips designed specifically for ultra-low-power applications.

Extending Battery Life in Wearable Designs – [Link]