Intel Optane, Intel’s Next-Generation SSD Technology

In July 2015, Intel and Micron Technology announced a new technology for memory and storage solutions called “3D XPoint™ technology“. It is a new category of nonvolatile memory that addresses the need for high-performance, high-endurance, and high-capacity memory and storage.

Now Intel had produced its Optane™ technology that provides an unparalleled combination of high throughput, low latency, high quality of service, and high endurance. The new technology is a special combination of 3D XPoint™ memory media, Intel Memory and Storage Controllers, Intel Interconnect IP and Intel® software.

From system acceleration and fast caching to storage and memory expansion, Intel Optane delivers a revolutionary leap forward in decreasing latency and accelerating systems for workloads demanding large capacity and fast storage.

3D-Xpoint memory structure, Source: Intel Corp

The first product with this technology is the Intel Optane SSD DC P4800X. It is a 375GB add-in card that communicates via NVMe over a four-lane PCIe 3.0 link, and it is available for $1,520 or $4.05 per GB.

Optane™ storage could be used in many sectors and domains. It will help healthcare researchers to work with larger data sets in real-time, financial institutions to speed trading, and retailers to identify fraud detection patterns more quickly. Optane™ technology can also be used at home to optimize personal computer for immersive gaming experience.

The 3D XPoint innovative, transistor-less cross point architecture creates a three-dimensional checkerboard where memory cells sit at the intersection of words lines and bit lines, allowing the cells to be addressed individually. As a result, data can be written and read in small sizes, leading to fast and efficient read/write processes.

Memory cells are written or read by varying the amount of voltage sent to each selector. This eliminates the need for transistors, increasing capacity and reducing cost. The initial technology stores 128Gb per die across two stacked memory layers. Future generations of this technology can increase the number of memory layers and/or use traditional lithographic pitch scaling to increase die capacity.

3D XPoint Technology Wafer

You can get more detailed information about 3D Xpoint and Intel Optane technologies through their official websites. You can also take a look at these two Intel P4800X reviews; Billy Tallis fromAnandTech and Paul Alcorn from Tom’s Hardware.

LTC2063 – 2μA Supply Current, Zero-Drift Operational Amplifier

The LTC2063 is a single low power, zero-drift, 20kHz amplifier. The LTC2063 enables high resolution measurement at extremely low power levels. Typical supply current is 1.4μA with a maximum of 2μA. The available shutdown mode has been optimized to minimize power consumption in duty-cycled applications and features low charge loss during power-up, reducing total system power.

The LTC2063’s self-calibrating circuitry results in very low input offset (5μV max) and offset drift (0.02μV/°C). The maximum input bias current is only 20pA and does not exceed 100pA over the full specified temperature range. With its ultralow quiescent current and outstanding precision, the LTC2063 can serve as a signal chain building block in portable, energy harvesting and wireless sensor applications.

LTC2063 – 2μA Supply Current, Zero-Drift Operational Amplifier – [Link]

PCB Droid – First Mobile PCB Designer App

The applications available nowadays serve our everyday life well. Would it be the need of our entertainment, business life or lifestyle. However, there is one special field where we could face a serious shortcoming and it is the engineering field. I’ve come across a demand through forums specialized in electronics for a mobile application, designing printed circuits on your mobile device.

The goal was to create an application, which can be used as a designer tool for printed circuits and exporting those into different formats in an Android and Windows 10 environment. The consumption of these mobile devices is a fraction of their desktop sidekicks and an app such makes designing easier, even in your daily commute. This realization gave birth to PCB Droid application. As an electronic hobbyist as far as I’m concerned others engaged in DIY electronics usually don’t utilize the possibilities and professionalism of these programs. In practice, PC printed circuits designers are using circuit diagrams as an input. Hobbyists pretend to prefer designer programs where they can draw the marginal strips themselves and adjust them on the printed circuits. PCB Droid doesn’t require any kind of previously made circuits diagrams. The parts can be drawn onto the printed circuit by the user starting from the basic elements to the most complex components.

PCB Droid – First Mobile PCB Designer App – [Link]

Dual die, Hall effect, latch and switch sensor is accurate & redundant

Graham Prophet @ eedesignnewseurope.com discuss about Melexis magnetic latch and switch sensors. He writes:

Melexis (Tessenderlo, Belgium) has introduced a range of new magnetic latch and switch sensors that feature two silicon dice in the same package, yielding highly reliable devices, which are aimed at automotive applications including transmission, power steering, braking and locks/latches.

Dual die, Hall effect, latch and switch sensor is accurate & redundant – [Link]

Linear Lab Power Supply with digital meter

@ instructables.com build a nice power supply for his lab. He writes:

From my point of view one of the best ways to get started in electronics is to build your own laboratory power supply. In this instructable I have tried to collect all the necessary steps so that anyone can construct his own.

All the parts of the assembly are directly orderable in digikey, ebay, amazon or aliexpress except the meter circuit. I made a custom meter circuit shield for Arduino able to measure up to 36V – 4A, with a resolution of 10mV – 1mA that can be used for other projects also.

Linear Lab Power Supply with digital meter – [Link]

Real Time Clock On 20×4 I2C LCD Display with Arduino

Sometimes it may be necessary to use a display while making a hardware project, but the size and the type of the display may vary according to the application. In a previous project, we used a 0.96″ I2C OLED display, and in this project we will have an I2C 20×4 character display.

This tutorial will describe how to use 20 x 4 LCD display with Arduino to print a real-time clock and date.

Real Time Clock On 20×4 I2C LCD Display with Arduino – [Link]

YouTube Subscriber Counter with Wemos D1 mini

educ8s.tv @ youtube.com uploaded a new tutorial. Nick writes:

Today we are going to build a DIY YouTube subscriber counter with a big LCD display and a 3D printed enclosure

YouTube Subscriber Counter with Wemos D1 mini – [Link]

Panelization – using GerberPanelizer on Windows

Arsenijs over at Hackaday.io explains how to panelize PCBs using GerberPanelizer on Windows. He writes:

This tutorial was done on Windows. Authors claim it could also be used on Linux by using Mono, but I haven’t tried and don’t understand a lot about Mono to see what could be done. I am switching to Linux nowadays, so I’d be very grateful to anybody that’d make instructions on how to launch it, however – and I’m sure other fellow Linux-wielding engineers will be grateful, too =)
This is the GitHub issue describing steps to launch it on Linux, half-successfully (thanks to @jlbrian7 for figuring this out

Panelization – using GerberPanelizer on Windows – [Link]

Drag soldering SMD parts with a flux pen

This video shows how to drag solder SMD parts with a high density package (in this video a Xilinx XC9572XL with VQFP 64 pin package is used).

Drag soldering SMD parts with a flux pen [Link]

Artificial Magnetic Fields For Photons

Photons became a hot research topic due to their important role in holding data across long distances. Starting from the fact that photons are insensitive to magnetic fields which concludes to their disability to process data, a group of researchers from the ETH (Eidgenössische Technische Hochschule) in Zürich are trying to make photons controlled with electric fields by giving them some electrical charge.

Visualisations: Colourbox / Montage Josef Kuster)

Photons or Polaritons?

They are using polaritons in their approach to build this artificial magnetic field. Polaritons are hybrid particles consist of coupling a photon with an electric dipole. When photons enter a material, the electrons allow themselves to be moved by the light waves or ‘polarize’, they form polaritons – coupled light and polarization waves, or excitons. Meaning that they could convert photons  into polaritons. Packing excitons with them as a luggage, we can now steer polaritons  indirectly by the magnetic fields.

“The combined effect of magnetic and electric fields on polaritons then leads to a gauge potential”, says Hyang-Tag Lim, a post-doctoral researcher in Imamoğlu’s laboratory.

Researches are comparing the gauge potential to a tiltable lifting platform. For example, when trying to lift a vehicle, the potential energy will change, but the vehicle won’t move. However, once we tilt the platform, a difference in height along the platform happens and the vehicle will move. Thus, a gauge potential will result in an effective magnetic field only if it varies in space.

The researchers are now looking for ways to strengthen gauge potentials. Researchers had published this researchers in the scientific journal Nature Communications, you can have a look at the research here.

Source: ETH Zurich