Tiny FPGA BX – A Tiny, Open Source FPGA development board for Makers

The TinyFPGA boards from Luke Valenty (TinyFPGA) are a series of low-cost, open-source FPGA development boards. These boards offer an inexpensive way to get an introduction to the world of FPGAs.

If you have ever considered working with an FPGA before, you will know how difficult they could be especially for those new to the game. TinyFPGA boards are an excellent way to kickstart development with them. They are breadboard friendly, and one can put up a simple circuit around them before adding things like sensors or actuators.

The TinyFPGA boards are currently made up of about three series – The TinyFPGA A1 that offers an X02-256 containing 256 logic cells; the A2 sports with an X02-1200 of about 1200 logic cells, and lastly the B2 boats an ICE40LP8K with 7680 logic cells. They are low cost in nature, costing about $12,00, $18,00 and $38.00 respectively. The latest upcoming release to the TinyFPGA board family is the TinyFPGA BX.

Like the other Tiny FPGA Boards, the Tiny FPGA BX boards is quite flexible and powerful. The BX boards are intended for the maker’s community. The BX module allows one to design and implement a digital logic circuit in a tiny form-factor, and it’s perfect for building with breadboards or custom PCBs.

The TinyFPGA BX shares close similarities with the TinyFPGA B2 and are both based on the Lattice ICE40LP8K FPGA Chip with about 7680 logic cells. The BX board will offer an incredible power to project development and allows to achieve things not usually expected on traditional microcontroller boards at a fraction of the cost.

According to Luke, the TinyFPGA BX prototype boards are currently being manufactured. The PCBs have been fabricated and are now waiting for assembly.

The BX measure at 0.7 by 1.4 inches and comes with a built-in USB interface, and preloaded with a USB Bootloader. It is expected to have 8Mbit of SPI Flash with only 5Mbit available for user applications.

The following are some of the available board specifications:

  • ICE40LP8K FPGA
    • 7,680 4-input look-up-tables
    • 128 KBit block RAM
    • Phase Locked Loop
    • 41 IO pins
  • Small, breadboard friendly form-factor
    • 0.7 by 1.4 inches
  • Built-in USB interface with open source USB bootloader
  • 8MBit of SPI Flash with 5MBit available for user applications
  • Integrated 3.3v and 1.2v regulators
    • 3.3v LDO regulator can supply up to 300ma of current to support external peripherals
  • Ultra-Low-Power 16MHz MEMs Oscillator
    • 1.3ma active power
    • 50ppm stability

These TinyFPGA boards offer an inexpensive way for hackers and makers to get an introduction to the world of FPGAs. And, with their small size, these boards can provide an easy way to add some programmable logic to a small project.

FPGA gives us the power to add real deal hardware functionality to our project, unlike with Microcontroller, where those features can only be added to a bit of software banging. The TinyFPGA Bx boards are still not fully launched yet, so now price point is currently available but is expected to share similar costing with the TinyFPGA B2 at $38.00.

More information about the project launch can be found on the crowdsupply page and also on the hackaday board page announcement. If you are interested in getting introduced to the world of FPGA, this guide from Luke is an excellent way to kickstart your adventure.

Revolutionizing Electric Field Measuring Techniques

Nowadays, electrical fields are being used not only in electrical engineering, but also for industrial, weather forecasting, safety, and medical applications. As a result, the need for a precise electric field strength measurement device has become increasingly high, and many investigations have devoted their resources to creating such device. TU Wien has developed a small electric field sensor that is much simpler, and most importantly, it is less prone to distortion.

There are a lot of measurement systems in the market. However, most of them are big, depend on complex surrounding calibration procedures, or the device is grounded to provide a reference measurement. All these factors cause distortion that affects the measurement. Additionally, dielectric devices develop surfaces charges that also lead to distortion, and conductive metallic components can have the same effect.

The sensor made by TU Wien is made from silicon forming a small, grid shaped structure fixed onto a small spring, so that when the silicon is exposed to an electrical field a force is exerted on the silicon crystals causing the spring to compress or extend. Another grid was added to make these slight changes visible. The silicon grid is lined up, so when movement occurs, light can pass through which is then measured and used to calculate the electrical field. It can only measure strength not direction, and it can be used for fields of up to 1 k Hz.  The silicon structures are just a few micrometers in diameter making it much smaller than conventional sensors.

This method of measurement is new, Andreas Kainzs from the Institute of Sensor and Actuator Systems says that in the future they would be able to achieve even better results as the measuring technique matures. The sensor is a micromechanical systems (MEMs) that has the potential for replacing the measuring techniques used nowadays. This device is not only less prone to distortion, but also portable, easy to transport and capable of fitting into wearables. The prototype has can measure weak fields of less than 200 volts per meter. This means that in terms of measuring capabilities, this sensor can easily compete with those already in the market. The sensor is not currently being sold, and TU Wien plans on keep improving the device.

[Source]

Low Cost/Voltage 3W Class-D Stereo Audio Amplifier for Portable Gadgets

This low cost low voltage 3W class-D stereo amplifier is based on PAM8403 IC, The PAM8403 is a 3W, class-D audio amplifier. It offers low THD+N, allowing it to achieve high-quality sound reproduction. The new filter-less architecture allows the device to drive the speaker directly, requiring no low-pass output filters, thus saving system cost and PCB area. With the same numbers of external components, the efficiency of the PAM8403 is much better than that of Class-AB cousins. It can extend the battery life, which makes it well-suited for portable applications. Trimmer Potentiometer helps to adjust the volume control, CN1 provided to feed the audio signal, CN2 power supply, Mute and shutdown in, LS1 and LS2 to connect the speaker. Shutdown and Mute pin required high level signal input, and can be connect to VDD power pins for normal operation, can be connect to GND for shutdown or mute the audio. The amplifier works well with standard audio signal input.

Low Cost/Voltage 3W Class-D Stereo Audio Amplifier for Portable Gadgets – [Link]

ESP32 E-Paper Thermometer with a DS18B20 Sensor

Our friends on educ8s.tv published a new video. Check it out.

In this ESP32 project video, we are going to use an E-Paper display and a DS18B20 temperature sensor to build a low-power thermometer. We are going to use the Arduino IDE to program to ESP32 board. ! It is a very easy project to build. It won’t take us more than 5 minutes so let’s get started!

ESP32 E-Paper Thermometer with a DS18B20 Sensor – [Link]

Adafruit Feather 328P – Arduino Uno on the Feather Family

Adafruit Feather 328P is the latest addition to the ever-expanding feather family boards manufactured by Adafruit. The Adafruit Feather development boards are a set of development boards made by Adafruit that can either be standalone, stackable or both. The feather boards all includes a LiPo battery connector, which will allow projects to easily be powered by LiPo batteries for on the go use.

Adafruit Feather 328P
Adafruit Feather 328P

The Adafruit Feather 328P is based on the popular Atmega 328P, the same processor that powers most Arduino maker boards especially the legendary Arduino Uno. With the Feather 328P, you can bring classic Arduino Uno code and even libraries to the Feather form factor. Measured at about 51mm x 23mm x 8mm (without the headers soldered in) and it weighs just 4.8g.

The Feather 328P is lightweight and a small form factor development board. At the heart of the Feather 328P is an Atmel ATmega 328P running a 3.3V and 8MHz. At 8MHz, the feather 328P can’t fully compete with the Arduino Uno which runs at 16MHz but is fair enough. The Feather 328P includes a 32KB of flash memory (storage memory), 2KB of RAM, and it uses the SiLabs CP2104 to give it a USB-to-Serial program which also provides users with some integrated debugging capabilities.

feather on a breadboard

The Feather 328P boards come without any headers soldered, so you have to solder yourself to start using it for prototyping. Unlike the Arduino Uno and some other Arduino board which are not fully breadboarding compatible, the Feather 328P fits perfectly into a breadboard and will be great for quick prototyping without the need for jumper cables.

Like other Feather development boards, the Feather 328P also includes a LiPo battery connector for any 3.7V Lithium Polymer batteries with a built-in battery charging. It will charge straight from the micro USB port, and you don’t necessarily need a battery to make it work, it will run just fine straight from the micro USB connector. The Feather will automatically switch over to USB power when it’s available making sure your project never goes offline as far you still got some juice in the battery though. You can also measure the battery voltage through one of the analog pins, the analog pin must not be connected to anything for this to work.

The following are some of the specifications of the Feather 328P:

  • Size  – 2.0″ x 0.9″ x 0.28″ (51mm x 23mm x 8mm)
  • Weight – 4.8 grams
  • Processor – ATmega328p @ 8MHz with 3.3V logic/power
  • Power –
    • 3.3V regulator with 500mA peak current output
    • Built-in 100mA lipoly charger with charging status indicator LED
  • USB serial converter (CP2104) for USB bootloading and serial port debugging
  • GPIO –
    • 19 GPIO pins + 2 analog-in-only pins
    • 6x PWM pins
  • Connectivity –
    • Hardware I2C, SPI.
    • For UART devices, should use SoftwareSerial
  • Others –
    • 8 x analog inputs (two are shared with I2C)
    • Pin #13 red LED for general purpose blinking
    • Two LEDs for serial data RX & TX
    • Power/enable pin
    • 4 mounting holes
    • Reset button

The Feather 328P comes with an extra prototyping area to add some couple of components without using a breadboard. The Feather 328P is available for purchase and priced at $12.50, you can buy now online at Adafruit Store. To find out about the other feather boards, check them out here.

Infrared repeater using AVR mcu

Madis Kaal @ nomad.ee designed a infrared repeater based on ATMEL AVR + TSOP1738 infrared receiver. He writes:

I built this MCU based infrared repeater to allow me to control my A/V equipment that is behind a wall. The system is very simple.

Power is supplied to CON1 from a cheap Alcatel phone charger that outputs stabilized 12V, passes through reverse voltage protection diode to IC1 that outputs 5V VCC. Atmel AVR microcontroller runs from 4MHz ceramic resonator Y1, C3+R1 form a reset circuit. Infrared detector (TSOP1738 in my case) is connected to INT0 input, C1+R2 are for detector power filtering.

Infrared repeater using AVR mcu – [Link]

SODAQ ONE board – GPS + LoRa + Solar charger

This is the third generation of our succesful SODAQ ONE board. It is equipped with a solar charge controller and runs on a LiPo or a permanent battery. It has the Ublox Eva 8M GPS module which is not only miniature but with it’s assisted GPS feature it can get a fix within seconds. We’ve now added an extremely low power Accelerometer/Magnetometer. This gives the board a nifty feature where it can stay in (deep) sleep mode until it moves. An essential feature for developing low power devices.

Let’s imagine you want to develop a bicycle tracker using the SODAQ ONE. You would like to track the position of the bike, but only when it has moved. This is possible if you keep the device in deep sleep until it detects motion. If the motion continues for a while, the bicycle may have changed position so only then the GPS will switch on to get a new reading and send this location over the LoRa network. Efficient right? This system will allow you make most efficient use of your battery capacity by only using the GPS when really needed, essentially increasing the battery life of your system.

SODAQ ONE board – GPS + Solar charger board – [Link]

Infinite Noise true random number generator

This is an Open hardware USB true random number generator coming soon on crowdsupply.com

The Infinite Noise TRNG is an affordable and secure true random number generator (TRNG) based on a modular entropy multiplier technique that continuously loops over previous random output, gathering randomness from the noise of the hardware components along the way, to generate the next random output. The simplicity of this technique makes it quite robust to common attacks like signal injection. The openness of the implementation makes it and easy to inspect and verify, as all security hardware should be!

Features & Specifications

  • Default 30 KB/second of random data
  • No firmware
  • “Whitening” implemented in the driver
  • Comes with polycarbonate enclosure
  • Immune to power supply noise and RF interference
  • Uses only stock components
  • Health monitor built into host drivers
  • Multiplatform driver support (Windows, Linux, and also ARM-support)
  • Fully open source (see GitHub repo)

HoneyWell´s Small, High Performance Pressure Sensor

Honeywell is a technology company working towards connecting the world. They are currently working on connected homes, buildings, plants (such as refineries), warehouse, workers, aircrafts, vehicles, and healthcare while addressing challenges such as energy, safety, security, productivity, and global urbanization. To enhance product performance, Honeywell has designed a MicroPreassure board mount pressure sensor measuring only 5 mm x 5 mm.

Nowadays, the market is filled with low performance cheap sensors or high performance expensive sensors which do not meet the need for fully functional cheap sensors for industrial and medical applications. Honeywell’s MPR is a small piezo resistive silicon pressure sensor with digital output, and it is the smallest ported pressure sensor in the market. This device was designed to be easily installed and to work without the need for external amplification. MPR MicroPreassure sensor has amplification, compensation, and low power consumption. Additionally, the device has high accuracy, it is liquid tolerant, meets moisture sensitivity level 1 requirements, and it is durable (it has strong metal ports).

This device could not only help improve already existing technologies, but also it would allow for this type of sensors to be introduced in new objects such as wearables, or common objects for IoT applications. In medical industry the sensor can help reduce the size of bulky devices and may even allow the patients to own their own monitoring device at home. MicroPreassure was specifically developed for high volume applications such as appliances, non-invasive blood pressure machines etc. For circuit designers and engineers, this sensor gives the opportunity to reduce the size in all the devices by using less space in boards and PCBs.

It was designed to meet high volume requirements (250,000 units/year), so with a low production cost and a really good performance, designers can now include these sensors to reduce their device price and to give them optimal performance. The user will have access to 1.5% accuracy and 13 bits of effective resolution which makes the processes more efficient. As a result, depending on the design, the device may be less prone to errors, require less power, or make less noise.

[source]

Pulurobot – An Open Source Heavy Load Bearing Application Robot Powered by the Raspberry Pi

If you have seen the starship delivery robots by Starship Technologies, you will know how cool delivery robot can be. Pulurobotics have released a set of low-cost opensource robots that are capable of carrying heavy loads and can be reconfigured to do several tasks.

Pulurobots
Pulurobots

Application robots are robots that can be configured to do several tasks. The Finish based company Pulurobotics have launched the Pulu set of robots called Pulurobots. Just like the way we have the Starship robot and other delivery robot, Pulurobots are low cost (low cost as compared to other robots), load bearing (can carry a payload of over 100kg), and are autonomous robots. Pulurobot can be used as – a delivery boy, a recycle bin, a nightguard, telepresence, shopping carrier, and many more.

The Affordable autonomous open source mobile robot is set to be published at Fosdem 2018, at the ULB Solbosch Campus in Belgium on Sunday 4th February 2018. At the heart of pulurobots is the Raspberry Pi, it needs one Raspberry Pi for navigation and communication with RobotBoard but can feed up to five Raspberries if you need more power or multiple Operating Systems to your application. The robot does Simultaneous Localization and Mapping (SLAM), charges automatically and fulfills the definition of an autonomous mobile robot.

Pulurobot was built from the ground up and doesn’t use ROS (Robots Operating System), even though it is compatible with it. Pulurobot comes in three models:

  • Pulurobot S
  • Pulurobot M
  • Pulurobot L

The Pulurobot S is the smallest version of the robot family with a footprint of about 400 x 300mm, Pulurobot S is capable of carrying over 50Kg of load, tested with 58Kg. Based on the same software and controller board that powers the other robots, Pulurobot S is ideal for applications that require small spaces or offices and a perfect fit for homes.

pulurobots parts
pulurobots parts

Pulurobot M is a medium size agile robot and comes in size of 650mm x 470mm with height 230mm and 304mm from the ground. It is powered by 2 pcs of 300W 24V BLDC wheel hub motor, uses LIDAR for navigating and mapping, 4 x 3D TOF (Timer of Flight) cameras and sonar sensors for obstacles. Pulurobot M is capable of carrying over 90 Kg of load, tested with about 118Kg and found no mechanical problems. It is meant to be an application platform. If you need more batteries for your application, you can stack it onto the robot. Inside the robot is a space for 240Wh 18650 battery array, but can easily accommodate around 1KWh on the chassis.

Pulurobots Sonar Sensors and Controller Board
Pulurobots Sonar Sensors and Controller Board

The following are some specification of the Pulurobot M:

  • Controller board
    • MCU – STM32 microcontroller for sensor management & low-level navigation
    • SBC – Slot for Raspberry Pi 2 or 3 for running mapping (SLAM)
    • Connectivity – WiFi and/or 3G/4G
    • Sensor –  MEMS gyroscope, accelerometer, compass
    • Motor controllers –   4pcs BLDC motor controllers, 700W peak, to support four-wheel drive computation
    • Power Supply – 5V/10A
    • Charger – 100W Lithium-ion charger
  • Vision
    • 2D 360 degree LIDAR
    •  Low-cost off-the-shelf 3D Time-of-Flight camera (SoftKinetic DepthSense) for mapping close obstacles
  • Chassis
    • Riveted, laser-cut aluminum chassis
    • Robust suspension: always four wheels on the ground
    • Two-wheel drive, BLDC hub motors (similar to hoverboards)
    • Supports at 90kg when moving, mechanical structure can withstand a lot more 
  • Battery – 18650-based lithium ion battery
  • Charging –  Can find and mount to its charger automatically

Pulurobot L is the largest of all the Pulurobot series and is expected to carry around 300Kg load. Pulurbot is currently not yet available, still on the drawing board. Pulurobot L will find applications in industries.

While most of the robots are still under development and labeled to be open source, they haven’t yet released their SW-HW design to the public domain yet. It is quite possible that their design could be available after the publication on 4th of February.  The Pulu S is available and will be available for pre-order for 999.00 EUR only during the Fosdem event, the Pulu M is available for purchase at about 3000 EUR, with delivery taking about 2 months.

Pulurobots could be a game changer in the robotics industries and could help foster more innovation, with the hope of bringing down the cost of building small but yet powerful robots in the future.