MicroZed is a Powerful and Low-Cost ARM + FPGA Linux Development Board

MicroZed is a low-cost development board from Avnet, the makers of the $475 ZedBoard and the entry level MiniZed development boards. Its unique design allows it to be used as both a stand-alone evaluation board for basic SoC experimentation or combined with a carrier card as an embeddable system-on-module (SOM).

The MicroZed processing system is based on the Xilinx Zynq®-7000 All Programmable SoC. The Zynq®-7000 All Programmable SoC (AP SoC) family integrates the software programmability of an ARM®-based processor with the hardware programmability of an FPGA, enabling key analytics and hardware acceleration while integrating CPU, DSP, ASSP, and mixed-signal functionality on a single device. The processing system offers the ability to run standard operating systems like Linux, real-time operating systems, or a combination of the two. The programmable logic provides a unique capability to create custom interfaces or custom accelerators. Together, they provide a versatile, performance optimized solution.

ZedBoard™ is a low-cost development board for the Xilinx Zynq®-7000 All Programmable SoC. This board contains everything necessary to create a Linux, Android, Windows® or other OS/RTOS-based design all at a cost of $495. The MicroZed sells for $199 with close performance and functionality with the ZedBoard. MicroZed contains two I/O headers that provide connection to two I/O banks on the programmable logic (PL) side of the Zynq – 7000 AP SoC device. In stand-alone mode, these 100 PL I/O are inactive. When plugged into a carrier card, the I/O are accessible in a manner defined by the carrier card design. The MicroZed board targets application in the areas of general FPGA evaluation and prototyping, embedded SOM applications, embedded vision, test & measurement, motor control, software-defined radio, industrial network and industrial IoT.

The Zedboard is based on Zynq-7020 with 85K logic cells while the MicroZed is based on the lower Zynq-7010 with a 28K logic cell. The MicroZed has 1GB RAM instead of 512 MB on the ZedBoard and has lesser interfaces as compared to the ZedBoard.

The following below are the features of the MicroZed SoM:

SoC

  • XC7Z010 – 1CLG400C

Memory

  • 1 GB of DDR3 SDRAM
  • 128 Mb of QSPI Flash
  • Micro SD card interface

Communications

  • 10/100/1000 Ethernet
  • USB 2.0
  • USB-UART

User I/0 (via dual board-to-board connectors)

  • 7Z010 Version
    • 100 User I/0 (50 per connector)
    • Configurable as up to 48 LVDS pairs or 100 single-ended I/O

Misc

  • 2×6 Digilent Pmod compatible interface providing 8 PS MIO connections for user I/0
  • Xilinx PC4 JTAG configuration port
  • PS JTAG pins accessible via Pmod
  • 33Mhz oscillator
  • User LED and push switch

The MicroZed Evaluation can be purchased from the Avnet store here and comes with the following: MicroZed board, Micro USB cable, 4GB μSD card, Getting Started Card and a Xilinx Vivado WebPACK support and the Avnet’s MicroZed SOM comes bundled with the Wind River’s Pulsar™ Linux.

Drones- A Blessing or a Curse?

The increasing popularity of unmanned aerial vehicles (drones) has created a lot of security issues and possible privacy threats. Drone manufacturers have made them easy to fly so that any person without any experience can buy one and fly it without reading the instruction manual first. This has made them attractive for consumers, but also for criminals. Most of them have a camera to allow the user to go to distances beyond their sight. As a result, drones are now being used by many companies to make deliveries such as Amazon, by people to take selfies, by explorers, by authorities etc. This increased amount of usage may pose security threats to privacy and commercial space.

For example, there is already reported cases of drones almost crashing into military aircrafts, or invading the helicopters flying area when trying to put out a forest fire, hacked drones, or drones being used to smuggle drugs. Additionally, there are a lot of reports involving drones constantly flying over private properties while recording. Drones are difficult to detect because of their size, so the company Aaronia produced a new drone detection system that tracks the high-frequency signal between these devices and it´s remote control.

The device consists of a IsoLOG 3D antenna, a Spectran V5 spectrum analyzer and a plug in for the RTSA software. It offers the user a long detection range, functionality in poor visibility, high resolution of signal detection, portability, drone identification etc.

This system provides detailed information of signal distribution, and can be combined with different devices to provide a bigger range of detection. It can be programmed to set off an alarm when some selected parameters are exceeded. The IsoLOG 3D has 16 sectors that provide full 360 RF spectrum overview including an image of the monitored area. It has W signal sensitivity and continuous data streaming with up to 4 TB per day.

Militaries could use this device to protect large areas, and even in the future to stop the drones from entering areas where they could interfere with life threatening situations or confidentiality sensitive scenarios. For now, only detection is possible, but it is a huge step toward fixing the security concern posed by drones. Some parts in the United States have already implemented laws to register all drones and to prohibit the users from flying them above certain heights and close to airports. These governmental measures can help the Aaronia device to easily identify the drones, and the device could help the authorities to stop people from breaking the law.

[source]

Osram Develops LED Beam Array Smart Headlamps That Can Analyze Road And Traffic

After over three years of research and field demos, a prototype of Osram’s EVIYOS smart, controllable, high resolution LED automotive headlamp was introduced at the International Symposium on Automotive Lighting earlier this year in Darmstadt, Germany. This smart LED headlamp is able to control its 1,024 LED “pixels” individually. The basic component of the EVIYOS combines an LED chip with electronics to provide on/off and dimming control for each pixel within the LED module.

Smart Beam Array LED Headlamp By Osram
Smart beam array LED headlamp by Osram

The only 4×4 mm module is capable of delivering about 3,000 lumens when fully activated. The brightness is much greater than the 1,400 lumens of the typical LED automotive headlamp modules. The required circuits to control this module is already connected to the headlamp and it includes an interface for connecting directly to the vehicle electronics. The truly “smart” aspect of this invention is, the system can continuously analyze factors such as the car velocity, road curvature, and distance from other vehicles on the road, including oncoming traffic. Then it makes adjustments to the light emitted from the vehicle’s headlamps accordingly.

For instance, a wider beam would be provided for high crowding areas to illuminate the road ahead and also the sidewalks. Having individual pixel control capability, the headlamp can adjust the light output very precisely. Hence, it can provide better visibility for other drivers sharing the road by dimming the specific pixels that would otherwise be causing glare, while still illuminating the road nicely.

As it is scheduled to launch in 2020, Osram is looking forward to offering a separate family of modules targeting lighting applications for which individual control of light pixels would be useful. When asked about potential future markets for EVIYOS technology, Osram responded,

with the increasing need for adaptive forward lighting and glare-free headlamps, a dynamically controlled matrix light source provides additional benefit for forwarding lighting and certain interior lighting applications in a vehicle.

So, with the formal launch over two years away, only time will tell if this new technology by Osram can cure the nightmare of night driving.

1.2V-25V/10A Adjustable Power Supply Using Power Op-Amp

This is a small size power supply based on OPA549 power op-amp that provides output voltage 1.2V to 25V with 0 to 10A adjustable current limit. Two onboard trimmer potentiometers provided to adjust the voltage and current, LED D1 is over temperature indicator. The circuit works with input supply of 30V DC and logic supply 5V DC. IC requires large size heat sink to work with full 10A current range. Screw terminals for input and output connections are provided. The OPA549 is a low-cost, high-voltage/high-current operational amplifier ideal for driving a wide variety of loads. This laser-trimmed monolithic integrated circuit provides excellent low-level signal accuracy and high output voltage and current. The OPA549 operates from either single or dual supplies for design flexibility. The input common-mode range extends below the negative supply.

1.2V-25V/10A Adjustable Power Supply Using Power Op-Amp – [Link]

Could Sodium-ion Batteries be a Replacement for Li-ion Batteries?

Batteries made by Tiamat, a sodium battery startup spun off from the National Center for Scientific Research in France.

In early 1990s lithium-ion batteries started gaining popularity as a substitute for nickel-cadmium batteries. They have higher energy density, low self- discharge, and low maintenance, but it was soon found that they have short life span, unstability which causes security concerns and creates the need for protection circuits (to maintain it within safe limits), and are really expensive to produce. Lithium is scarce (or is soon going to be), only 0,06% of earth crust is made of this material and its mainly found in South America. A start up called Tiamat formed by scientists at several French universities proposed an alternative to lithium-ion batteries, they developed the first sodium-ion battery in industry standard 18650 cell size.

Unlike Lithium, sodium makes up 2.6% of earths crust which makes it the sixth most abundant element. As a raw material sodium sells at about $150 a ton compared to $15,000 a ton for lithium. Sodium batteries are cheaper to produce than lithium batteries, leading to a lower selling price. Also, the lifespan is about ten years compared to lithium which is 4 years and Sodium-ion batteries can last for up to 5000 charge/discharge cycles. Tiamat batteries are not a fire hazard, and provide more stability for a cheaper price.

Scientists want to use these batteries mainly for mass storage of interment renewable energies such as solar o wind. Tiamat is not looking to make Li-ion batteries disappear, instead they want to focus on their long lasting power, and use it for stationary storage. This type of battery could be used in electric cars to allow lasting trips with short recharge time. Production has not started, but when it is approved, and they start to sell France could become a leader in this type of technology. This startup has the support of RS2E (Réseau sur le stockage électrochimique de l’ énergie) a French research network dedicated to energy storage devices, and they plan to launch the product on 2020.

Nowadays, lithium batteries are used mainly for smartphones, laptops, and cars that means that if a new technology was going to replace them, a much better alternative would be needed. Even when sodium batteries are cheaper and safer they still have performance issues that could affect their sales, but as Tiamat said they are not looking to replace these and their market is completely different. For now, the cells produced offer only about half of the energy density of Li-ion and are yet to be improved in many aspects.

[Source]

Using an MMA7455 accelerometer with an ESP32 board

by shedboy71 @ microproducts.net discuss how to use MMA7455 accelerometer with ESP32 board. He writes:

The MMA7455L is a Digital Output (I2C/SPI), low power, low profile capacitive micromachined accelerometer featuring signal conditioning, a low pass filter, temperature compensation, self-test, configurable to detect 0g through interrupt pins (INT1 or INT2), and pulse detect for quick motion detection. 0g offset and sensitivity are factory set and require no external devices. The 0g offset can be customer calibrated using assigned 0g registers and g-Select which allows for command selection for 3 acceleration ranges (2g/4g/8g). The MMA7455L includes a Standby Mode that makes it ideal for handheld battery powered electronics.

Using an MMA7455 accelerometer with an ESP32 board – [Link]

XMotion All In One Controller for Robotics

If there is a motion, it must have XMotion. Recreating Arduino & interface circuits user focused.

XMotion is Arduino Compatible all in one robot controller. Which designed specially for robotics, IOT and maker projects.

It includes powerful Motor drivers, switching mode regulator, interface circuits and more. With protected features, it is all in one board for lots of different type robot projects.

But not only this. Also we added some supporting materials, like starter codes, libraries. If you want to do line follower, mini-sumo or any basic robot we have ready-made codes for beginners.

XMotion All In One Controller for Robotics – [Link]

NFC Key Protects Your Data by Disconnecting Chips From Antenna

Cameron Coward @ blog.hackster.io writes:

Like most connected technology these days, near-field communication (NFC) is susceptible to hacking. By its very nature, NFC is normally accessible by anyone nearby. NFC, as it was originally intended, is designed to provide data wirelessly to any nearby readers without requiring a power source of its own.

Fortunately, N-O-D-E, one of our favorite open source hardware developers, has come up with a solution called the NFC Key. This handy little keychain-friendly device protects your NFC chips in the simplest way possible: by physically disconnecting them from the antenna. Without the antenna connected, the chips just cannot be powered or transmit data.

NFC Key Protects Your Data by Disconnecting Chips From Antenna – [Link]

Transistors- The 70-year-old invention that changed the world

First transistor made in 1947- Point contact transistor

Its been 70 years since the fundamental building block of electronics was created, and it has been getting smaller, and better since then. The invention that won the Nobel prize for John Bardeen, Walter Brattain, and William Shockley in 1956 revolutionized electronics and made it into the IEEE milestone list. Before 1947 computers used vacuum tubes, which could be several inches long, consumed massive amounts of power, and needed to be regularly replaced. Nowadays, billions of transistors can fit in the area of a single vacuum tube, can last for many years and are a lot more efficient.

What is a transistor? For computing, basic binary logic operations are needed in order to perform calculations, so the objective of both vacuum tubes and transistors was to toggle the device between on and off position (1 or 0). A transistor is made from semiconductor material (usually silicon or germanium) capable of carrying current and regulating its flow. The semiconductor is doped which results in a material that either has extra electrons (n type) or has holes in the crystal structure (p type), and the transistor is made from a combination (layers) of both of these types. When current is applied, electrons can go through the different layers allowing energy to flow. Transistors can work as a switch or an amplifier depending on how it’s configured.

In 1965, the intel co-founder formulated Moore´s Law which states that every 2 years the number of transistors in a dense integrated circuit doubles. Since then Gordon E. Moore has been right, but soon the law will no longer be true which will lead to either a slowdown in technologic advancement or a new golden era for engineering where a new technology will replace transistors and a race to make it better and more efficient will again begin.

Transistors have powered 70 years of advances in computing, and it all started with the point contact transistor made by three scientists who changed history. However, other ways must be found to make computer more capable, but the problem is not just making smaller transistors, but also about the time it takes for information to get from one side to another. Transistors can be found in cellphones, computers, cameras, electronic games, and pretty much anything electronic that performs calculations, so if transistors stop advancing so will all these devices. Perhaps, consumers won’t feel the impact right away, but scientists in need of fast processing and super computers will.

[source]

WattUp – RF based Wireless Charging at a Distance

WattUp Far Field Transmitter

Recently, many big companies such as Samsung have developed wireless chargers which work by induction. These chargers usually consist of a station which needs to be in contact with the device in order to charge. The station defeats the purpose of being able to move and walk while still charging the device. Energeous, a global leader in RF- based wireless charging, created the award-winning device WattUp in order to give mobile power to everyone.

The WattUp transmitter converts electricity into radio frequencies, then beams the energy to nearby devices that have the right receiving equipment. This system has proved to be more practical than induction since it can work from up to 3 feet away. Energeous wants to make a wire free charging ecosystem by taking into advantage the fact that the transmitter can charge multiple devices at a time, and as WIFI it would be able to charge your phone even if you are Samsung and the transmitter is Apple. All kind of devices can be charged using WattUp including (but not limited to) cameras, smartphones, tablets, wearables, and toys.

The receiver uses multiples antennas to collect the micro energy beams created by the transmitter (which makes it safe because power is received in small amounts). There is also an application available in which you can control the devices that are receiving power, how much power for each one, and even what times you want it charging. For example, you can prioritize cellphone charging in peak hours of use and leave other electronics to charge at night just with the click of a button.

The WattUp has already been FCC (federal communications commission) approved, and Energeous offers a variety of prices depending on the range of the transmitter, but it is still not available in the market. The company will be in CES 2018 showing their product, this event will take place on January 9th– 12th in Las Vegas.

Wireless charging not only benefits consumers, but also offers real benefits in terms of efficiency, productivity, and safety in industrial applications. Moreover, cables require maintenance and are easily damaged which makes them unreliable and expensive to maintain. In hospitals there is a constant need for big equipment that uses battery packs or cables, but to maintain a sterile environment WattUp could be a good alternative. Furthermore, in the future this technology could be used to power electric cars avoiding the need for charging every 10 to 40 miles.

[Source]