Arduino Touch Screen Music Player and Alarm Clock Project


Dejan Nedelkovski build an Arduino-powered MP3 Music Player plus Alarm Clock. The player has a 3.2″ TFT display and the home screen displays time, date and temperature along with touch control buttons.

In this project I will show you how you can make an Arduino Touch Screen MP3 Music Player and Alarm Clock. You can watch the following video or read the written tutorial below.

Arduino Touch Screen Music Player and Alarm Clock Project – [Link]

Lightweight Body Heat – Electricity Converter

Powering wearable technologies using thermoelectric generators (TEGs) is becoming more efficient. An undergraduate student in North Carolina University, Haywood Hunter, is producing a lightweight and an efficient wearable thermoelectric generator. It generates electricity by making use of the temperature differential between the body and the ambient air.This converter produces 20 times more electricity than other technologies (20 µwatts) and it doesn’t use any heat sink, making it lighter and much more comfortable.

Study co-lead Haywood Hunter, shows off the TEG-embedded T-shirt at work.
Study co-lead Haywood Hunter, shows off the TEG-embedded T-shirt at work.

The design begins with a layer of thermally conductive material that rests on the skin and spreads out the heat. The conductive material is topped with a polymer layer that prevents the heat from dissipating through to the outside air. This forces the body heat to pass through a centrally-located TEG that is one cm2. Heat that is not converted into electricity passes through the TEG into an outer layer of thermally conductive material, which rapidly dissipates. The entire system is only 2 millimeters, and flexible. Some limitations to size can be solved by choosing right power settings for different sizes.

Even though the wrist is the best place to use heat-electricity converters because the skin temperature is higher, the irregular contour of the wrist limits the surface area of contact between the TEG band and the skin. To solve this issue, it was recognized that the upper arm was the optimal location for heat harvesting. Meanwhile, another experiment showed that wearing the band on the chest limited air flow and heat dissipation, since the chest is normally covered by a shirt.The researchers found that the T-shirt TEGs were still capable of generating 6 µW/cm2 – or as much as 16 µW/cm2 if a person is running. It was realized then that T-shirts are just not as efficient as the upper arm bands.

TEG-embedded T-shirt (left) and TEG armband (right).
TEG-embedded T-shirt (left) and TEG armband (right).

The work was funded by National Science Foundation (NSF) and the research was done in the Nanosystems Engineering Research Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST) at North Carolina State. This center’s mission is to create wearable, self-powered, health and environmental monitoring systems, such as devices that track heart health or monitor physical and environmental variables to predict and prevent asthma attacks.

Further details can be reached at the university website and the project’s paper.

Via: ScienceDaily

LTM2889 – Isolated CAN FD µModule Transceiver and Power


The LTM2889 is a fully ISO 11898-2 compliant CAN (controller area network) μModule transceiver and isolator that guards against large ground-to-ground differentials and common mode transients in 3.3V or 5V applications. In practical CAN systems, ground potentials vary widely from node to node, often exceeding the tolerable range, which can result in an interruption of communications or destruction of a transceiver. The LTM2889 separates grounds by isolating the CAN transceiver using internal inductive isolation. It implements multiple levels of protection to significantly improve system reliability, including 2,500VRMS of galvanic isolation, ±60V bus voltage fault tolerance, greater than 30kV/μs common mode transient immunity, and ±25kV HBM ESD protection. The LTM2889 requires no external components, ensuring a complete and robust μModule solution for isolated serial data communications.

LTM2889 – Isolated CAN FD µModule Transceiver and Power – [Link]

RGBW LED Controller v3.1


Jeremy @ updated his RGB LED controller with a bunch of improvements.

The new RGBW LED Controller is here! The video above shows some of the things it can do, but here is a list of improvements:

IRLB8721PBF MOSFET’s – More power!

Double sided and thicker board traces

RGBW LED Controller v3.1 – [Link]

Tibbo Project System-based Aircon Controller Application


The app allows you to manage traditional air conditioners that are controlled through infrared remotes. Designed for the office environment, the app relies on the ambient brightness (measured by Tibbit #28) to determine whether the aircon should be running or not. In the office setting, no lights = no people = no need for the aircon to work.

Air conditioning is a consumptive business while air conditioners are big-ticket to run. In general, AC systems, older ones, in particular, do not have any real temperature feedback. You set the temperature on your remote, but alas, it has absolutely nothing to do with the actual temperature in the room. Even when it gets colder outsides, many aircons keep blasting cold air into your space. As a result, you have to constantly readjust the temperature as needed for optimal comfort throughout the day.  (more…)

8 Channel RS485 Relay Board


This project helps you control 8 relays using RS485 link with the help of a PC. This kit can effectively convert  a standard PC to a powerful   PLC ( programmable logic controller ). At the PC end , you will need to use our RS232 to RS485 Interface – C020 or any other suitable RS232 to RS485 Converter.

The project can offer a low-cost serial relay contact interface, easy to use with Visual Basic, Basic, C, Labview, Testpoint, or other high level languages that allow access to a serial port.

You can simply use the accompanying software provided with this project or issue control commands using any popular Terminal Port software available on the net.

The Serial port on the computer should be configured to 2400 baud – 8 bit words – 1 stop bit – no parity

8 Channel RS485 Relay Board – [Link]

Dual input, 2.5A step-down DC/DC achieves 95% efficiency


by Graham Prophet @

LTC3126 is a 2.5A, 2.4V to 42V input, synchronous step-down switching regulator with integrated dual input PowerPath control. Its power stage topology enables operation from either of two independent power sources, with seamless, internally controlled transitions between inputs to ensure a stable output voltage during hot-plug and power source disconnect events.

Dual input, 2.5A step-down DC/DC achieves 95% efficiency – [Link]

Lithium-ion battery fires: 7 solutions for improved safety

Steve Taranovich discuss about various ways to enhance Li-Ion batteries safety.

Typically, Lithium-ion batteries are safe and reliable. Just think about the $28B market they had in 2013 with a relatively small amount of fires and explosions. But every fire and explosion incident has the potential to cause a loss of life or serious personal injury (Not to mention the collateral material damage and cost).

Lithium-ion battery fires: 7 solutions for improved safety – [Link]

NUT4NT, Open-Source 4-Channel GNSS Receiver Development Board

Although the industry of professional satellite navigation systems is limited to experts and large companies, Amungo Navigation is working towards bringing this industry to individual developers, small companies, and startups through its new open source platform NUT4NT.

NT1065 chip
NT1065 chip

NUT4NT is a development board which implements NT1065 chip with USB 3.0 interface. NT1065 is a Global Navigation Satellite System (GNSS) receiver designed by NTLab, a fabless microelectronic company. It is the first low-cost low-power RF front-end solution in the world. It also has 4 channels supporting all GNSS systems and bands.

GNSS receivers are electronic devices that receive and process signals from a GNSS satellite. These signals used to provide information about receiver’s position,velocity, and time.

NUT4NT has two different working modes. The first uses dual inputs and acts as a centimeter level precision positioning tool, without the need of high quality antenna. The other mode uses the four inputs and provides an array antenna processing system to simply reduce interference and noise.

Dual Inputs Mode (Left) - Four Inputs Mode (Right)
Dual Inputs Mode (Left)   –   Four Inputs Mode (Right)

Hardware and software specifications of NUT4NT:

  • Receiver chip: NT1065
  • USB 3.0 controller: CYUSB3014
  • Clock rate: 10 MHz
  • RF inputs: two or four, depending on board option
  • RF inputs referred Noise Floor: 1 dB
  • ADC resolution – two-bit
  • ADC frequency – up to 99 MHz
  • Samples transfer – continuous full stream, from 20 to 100 Mbytes/sec
  • Power: 5V @ 0.5 A from USB or external adapter
  • Size: 70x50x20 mm (early board) / 77x122x25 mm (single board)
  • All GNSS systems: GPS, GLONASS, Galileo, BeiDou, IRNSS and future
  • All GNSS band: L1/L2/L3/L5, G1/G2/G5, B1/B2, E1/E5 and future
  • Four-channel synchronous reception for antenna array processing
  • Signal dumper (grabber) software
  • Spectrum analyzer software
  • NT1065 configuration software
  • Supports libusb API
  • Supports native Cypress driver API
  • Software for Windows, Linux, and potentially all other OS’s with libusb

There are two options of NUT4NT boards, the Early Board and the Single Board.

Early Board is for $399 and there are only limited boards to order through the crowdfunding campaign page. It consists of two separated boards: the base board, which has the USB 3.0 controller, and NT1065 submodule board.

Single Board will be available later as a future plan, and it is said to have  only one board instead of two.

NUT4NT Early Board
NUT4NT Early Board

NUT4NT is an open source project. Software sources are available on github and the hardware’s documentation will be available soon.

More information and details about the product with many accessories are reachable on the product crowdfunding page.

A Laser Treatment To Improve Paper Electronics

NanoEngineers” research group at Iowa University have been devoting efforts to use graphene and its amazing properties in their sensors and other technologies. Graphene has many extraordinary properties. It is about 100 times stronger than the strongest steel. It conducts heat and electricity efficiently and is nearly transparent.

Inspired by some recent projects about using inkjet printers to print multi-layer graphene circuits and electrodes, “NanoEngineers” have been working to move this research further by using the technology for a larger scale flexible, wearable and low-cost electronics. But there was some hurdles in improving the graphene conductivity after being printed and this process may damage the printing surface, such as papers, because of the high temperature or the use of chemicals.

Eventually, these engineers have led development of a laser-treatment process that allows them to use and improve printed graphene for electronic circuits and electrodes, even on paper and other fragile surfaces. The technology is said to show tremendous promise for a wide variety of fields including wearable sensors and thin film transistors with the ability of large-scale manufacturing.

It’s a three step process:

  • Graphene ink formulation: single layer graphene (SLG) powders were mixed with solvents and binders, bath sonicated, probe sonicated, and syringe filtered in order to produce a jettable graphene ink.
  • Inkjet Printing: The resultant graphene ink was syringed into the printer cartridge of a Dimatix Materials Printer and ejected via a piezoelectric nozzle in the subsequent printing process.
  • Laser Annealing:  A pulsed-laser processing of the electrodes using a Nd:Yag laser.
 Formulation, Printing, and Treatment, Source: <a href="!divAbstract">Original Paper</a>
Formulation, Printing, and Treatment, Source: Original Paper

The engineers were able to remove ink binders and reduce graphene oxide by developing a computer-controlled laser technology that selectively irradiates inkjet-printed graphene oxide, Transforming the inkjet-printed graphene into a conductive material capable of being used in new applications is a huge breakthrough in nanotechnology.

More details are available at this paper on NanoScale journal.

Via:  ScienceDaily