Imitation Fireplace Using Cool Mist and LEDs

A convincing artificial fire effect for the holiday season, using NeoPixel LEDs, an Arduino UNO, and a cool mist module.

The instructions for this are actually pretty simple, basically you just need to get the materials, and put them all together. The only technical part is soldering the wires onto the NeoPixel stick, and uploading the code to the Arduino. So let’s start with the NeoPixel LEDs.

Imitation Fireplace Using Cool Mist and LEDs – [Link]

Butterfly IQ – Ultrasound Anywhere, Anytime

Ultrasound, also known as sonography, is a medical procedure which uses sound waves to get images from inside the body. It is used to help guide biopsies, diagnose causes of pain, examine a baby in pregnant women, diagnose heart conditions etc. High- frequency sound waves are transmitted to the body using a small transducer (probe), then the probe collects the sounds that bounce back, and a computer uses that information to render an image. Ultrasound scanner consist of a transducer, a video display, a console (with computer and electronics) and sometimes multiple transducers are needed for different parts of the body. As a result, ultrasound machines are not portable, and are not easy to access during emergencies.

As a result, Butterfly has combined semiconductor engineering, artificial intelligence, and the cloud in order to create IQ, a portable and affordable ultrasound machine. Butterfly believes that “Medical imaging should be accessible to everyone on the planet”. With the use of a chip, a single probe, and an iPhone now every licensed healthcare practitioner can have an ultrasound anywhere, anytime.

The chips used for the device has transducers, signal processing and computational horsepower. Also, the device has its own battery (to avoid draining the phone’s battery), and works with 9,000 little drums that wobble to create sound and then receive it from the body. It does all the signal processing that would normally cost a hundred thousand dollars to render an image.

Nowadays, ultrasound machines use piezoelectric crystals which require on factory tuning for specific depths which generates the need for multiple probes. The IQ can be tuned on the go and can be buzz at 1 MHz for deep analysis or 5 MHz for shallow analysis. Additionally, the Butterfly IQ incorporates artificial intelligence for image acquisition and analysis which in the future could help guide nonprofessionals in proper operation of the device. Also, it includes cloud services for storage.

This device already has FDA clearance for 13 clinical applications which include abdominal, cardiac (adult and pediatric), fetal (obstetric), gynecological and procedural guidance. The same probe can be used to look anywhere inside the body, with different depths and to anyone.

Eventually, Butterfly expect their device to become as accessible and useful as a household thermometer, but currently it is not available for consumers and the price is high for household purposes. Its only supported by iPhone (soon by iPad), but there has been no talk about Android support. The price starts in 2K and shipping will begin on 2018.

[source]

RELATED POSTS

The “Neuropixels” probe records brain signals

 

After $5.5 millions collaboration and a lot of work during the past four years of engineers at Imec, the next-generation electrodes called Neuropixels probe were designed to record hundreds of neurons in the brain. Imec is an international nano electronics research center dedicated to build and test powerful new devices for detecting neural activity within the brain.

To understand how the brain operates, we must measure the joint activity of a myriad individual neurons distributed across brain regions. Until recently, this has been impossible.

Their success is due to three innovations:

  1. a multiplayer fabrication process that allows 384 interconnects on a thin shank;
  2. on-shank CMOS circuitry that allows 384 sites to be rapidly selected from a total of 966;
  3. on-device processing that amplifies, digitizes, and multiplexes the signals.

Neuropixels thus constitute a self-contained recording system: the data that emerge are already digital, and can be read by a simple, inexpensive interface to a standard computer.

Probe Options

There are four probe options, all four have the same on-probe amplification and digitization, and can all be used interchangeably with the same headstages and recording equipment.

  • Option1 probes (no switches, no amps) have 5mm-long shanks, and have no switches (they can only record from the most distal 384 sites) or on-site buffer amplifiers.
  • Option2 probes (no switches, yes amps) have 5mm-long shanks, and have no switches
  • Option3 probes (yes switches, no amps) have 10mm-long shanks with 960 total sites accessible via switches; they do not have on-site buffer amplifiers.
  • Option4 probes (yes switches, yes amps) have 10mm-long shanks with 966 total sites accessible via switches; they have on-site buffer amplifiers. Option4 probes can only record 276 channels at a time.

In practical terms, the probes with buffer amps (2 & 4) have slightly higher RMS noise levels in saline (~10-12µV RMS compared to 6-9) but may have superior rejection of certain types of noise.

Switched probes (3 & 4) do not seem to have any deficits relative to the un-switched, unless the shorter shank of the unswitched probes is more suitable for your experimental situation.

Basic Probe Details

  • Neuropixels probes have 384 recording channels (i.e. can record 384 signals simultaneously), and up to 966 recording sites (depending on the option)
  • Recording sites are laid out in a checkerboard pattern, see geometry note below.
  • 10 sites per group of 384 are reserved for selection as internal reference sites and cannot be used for recording (whether they are used for referencing or not)
  • Recording sites have ~200k-ohm impedances
  • Shanks are 70µm wide and 20µm thick (for Option1, shank is 50µm wide)
  • Probe weighs 0.3g, headstage weighs 1.1g.

Neuropixels probes represent a significant advance in measurement technology and will allow for the most precise understanding yet of how large networks of nerve cells coordinate to give rise to behavior and cognition.

Preliminary data examples and a user guide are available.

The top 10 crystal oscillators from SnapEDA

Elizabeth Bustamante @ snapeda.com lists the top 10 crystal oscillators used today. She writes:

A crystal oscillator is an electronic circuit that generates an electrical signal with a very precise frequency. To achieve this, it uses the mechanical resonance of a vibrating crystal made of piezoelectric material.

The first crystal oscillator was invented in the late 1920s by Walter Guyton Cady who was interested in submarine detection with ultrasonic waves. He suggested that a piezoelectric resonator could be used as a frequency reference, a coupling device between circuits, or a filter.

The top 10 crystal oscillators from SnapEDA – [Link]

ESP8266 WiFi Analyzer

This instrucatables show how to make an ESP8266 version WiFi Analyzer clone.

WiFi Analyzer is a handy app in Android, it help to visualize the WiFi signal information around you. It is very useful for helping select a right channel for setting a new AP. If you selected a channel that as same as another AP near you, you may encounter interference and degrade the network performance.

ESP8266 WiFi Analyzer – [Link]

ASUS Tinker Board Review

ASUS Tinker Board is a Versatile single board computer

Designed for computing hobbyists, the Asus Tinker Board is a single board computer that can do everything you’d expect from a desktop computer, with the capability to be embedded as a controller for a range of devices.

Perfect for connecting a range of external devices, the Tinker Board has four USB ports as well as a HDMI 2.0 connection, so that you can easily connect a keyboard, mouse and monitor just like you would to a standard PC tower. The HDMI 2.0 port supports 4k resolutions – perfect for setting up a personalised media suite.

Straightforward setup

To power your Tinker Board, all you have to do is connect a micro USB charging cable – just like an Android phone charger. And for storage, all you need is a microSD card, so that you can choose the amount of storage that suits your needs.

So that you can get online and add internet connectivity to your projects, the Tinker Board has a LAN Ethernet port as well as built-in WiFi and Bluetooth connectivity.

With an interface for a camera and support for 24-bit audio, the Tinker Board is perfect for setting up a variety of media based projects.

Features:

  • Rockchip RK3288 procesor
  • 1.8GHz ARM Cortex-A17 quad-core CPU
  • 600MHz ARM Mali-T764 quad-core GPU
  • Realtek ALC4040 audio codec
  • 2GB dual-channel DDR3 memory
  • MicroSD card slot
  • HDMI
  • Gigabit Ethernet LAN
  • 802.11b/g/n WLAN, Bluetooth 4.0
  • 4 x USB 2.0
  • Combi audio minijack – headphone/line output and microphone output
  • 40-pin GPIO header
  • 15-pin DSI
  • 15-pin CSI

ASUS Tinker Board Review – [Link]

Tiny UHF Tracker Transmitter

@ instructables.com writes:

This is a little circuit that could be used to track an object up to 400m.

It is essentially an SAW stabilized OOK modulated RF transmitter. The modulation is done with two low frequency ultra low power oscillators that activate the transmitter every two seconds for a short period.

With the setup shown here I got up to 400m range. Current consumption is about 180uA average so it’ll work for a couple of days with the little button cell. Frequency 915MHz.

Tiny UHF Tracker Transmitter – [Link]

NanoPi NEO Core Board for 8$

The NanoPi NEO Core (abbreviated as “NEO Core”) is an alternative NanoPi NEO that works like a CPU board with male pin-headers. It has the same form factor as the NanoPi NEO and same pin descriptions. The connectors and ports are populated to pin-headers on the NEO Core. The NanoPi NEO Core has ESD protection for its MicroUSB port and TF card slot. In addition the NEO Core can have an optional onboard eMMC flash which is preferred by industrial customers.

The NEO Core uses a popular Allwinner H3 SoC and has onboard 256M/512M DDR3 RAM. FriendlyElec offers models with three eMMC options: 8GB/16GB/32GB and one that doesn’t have eMMC at all. FriendlyElec migrated UbuntuCore with mainline kernel 4.11 for it. FriendlyElec develops a Mini Shield for NanoPi NEO Core/Core2 which has the same form factor as the RPi 3. When a NanoPi NEO Core is connected to this Mini Shield the whole assembled module can be well fit into a common RPi 3’s case.

RoomSense Board offers multiple sensors including PIR motion detection

 

RoomSense Board is an Occupancy and Air Sensor.

It can detect movement and room conditions and connect over WiFi with a passive IR occupancy sensor, barometer, temperature and humidity sensors, and the Microchip ATSAMW25 module. Pre-flashed with the Arduino bootloader, the RoomSense is easily deployable as a home automation device by developers of all skill levels.

This tiny USB dongle uses a passive IR motion detector, and temperature, humidity and barometric sensors to monitor a room’s conditions and occupancy. The Microchip ATSAMW25 provides a SAMD21 Cortex-M0+ MCU and WiFi connectivity. It integrates easily with cloud IoT platforms such as MyDevices Cayenne.

Features

  • ARM Cortex-M0+ MCU at 48 MHz
  • 802.11b/g/n WiFi
  • Barometer, humidity and temperature sensors
  • Passive IR motion detector
  • Powered over USB

RoomSense Board offers multiple sensors including PIR motion detection – [Link]

LT8364 current mode step-up regulator has 2.8V – 60V input range

The LT8364 current mode, 2MHz step-up DC/DC converter has an internal 4A, 60V switch. [via]

It operates from an input voltage range of 2.8V to 60V, and is suitable for applications with input sources ranging from a single-cell Li-Ion battery to multicell battery stacks, automotive inputs, telecom power supplies and industrial power rails.

The device can be configured as either a boost, SEPIC or an inverting converter. Its switching frequency can be programmed between 300kHz and 2MHz, enabling designers to minimize external component sizes and avoid critical frequency bands, such as AM radio.

LT8364 current mode step-up regulator has 2.8V – 60V input range – [Link]