Control category

4 Channel Opto-Isolated Module Using High Speed 6N137 Optocoupler

4 Channel Opto isolated board has been designed around 6N137 Opto-coupler, the 6N137 optocoupler is designed for use in high-speed digital interfacing applications that require high-voltage isolation between the input and output. Applications include line receivers, microprocessors or computer interface, digital programming of floating power supplies, motors, and other control systems.

The 6N137 high-speed optocoupler consists of a GaAsP light-emitting diode and an integrated light detector composed of a photodiode, a high-gain amplifier, and a Schottky-clamped open-collector output transistor. An input diode forward current of 5 milliamperes will switch the output transistor low, providing an on-state drive current of 13 milliamperes (eight 1.6-milliampere TTL loads).

4 Channel Opto-Isolated Module Using High Speed 6N137 Optocoupler – [Link]

RELATED POSTS

+9V TO 60V PWM 2.3A SOLENOID VALVE DRIVER USING DRV101

The DRV101 is a low-side power switch employing a pulse-width modulated (PWM) output. Its rugged design is optimized for driving electromechanical devices such as valves, solenoids, relays, actuators, and positioners. The DRV101 module is also ideal for driving thermal devices such as heaters and lamps. PWM operation conserves power and reduces heat rise, resulting in higher reliability. In addition, adjustable PWM potentiometer allows fine control of the power delivered to the load. Time from dc output to PWM output is externally adjustable. The DRV101 can be set to provide a strong initial closure, automatically switching to a soft hold mode for power savings. Duty cycle can be controlled by a potentiometer, analog voltage, or digital-to-analog converter for versatility. A flag output LED D2 indicates thermal shutdown and over/under current limit. A wide supply range allows use with a variety of actuators.

+9V TO 60V PWM 2.3A SOLENOID VALVE DRIVER USING DRV101 – [Link]

64 Key Infrared Remote Controller using PT2222M – NEC Code

64 channels Infra-Red Remote Transmitter circuit build around PT2222M IC, The IC is pin to pin compatible with NEC uPD6122 respectively, the remote is capable of controlling 64 functions keys and 3 double keys. The PT2222M Infra-red remote control transmission ICs using the NEC transmission format that is ideally suited for TVs, DVD Players, Audio Equipment, Air Condition, etc. By combining external diode and resistors, maximum of 65536 custom codes can be specified. The NEC transmission format consists of leader codes, custom codes (16 Bits), and data codes (16 Bits). It can be used for various systems through decoding by a microcontroller.

Features

  • Low Voltage 2V To 3.3V
  • Low Current dissipation: 1uA Max (Standby)
  • Custom Codes: 65536 (Set by optional provided diodes and resistors)
  • 64 Codes (Single Input) , 3 Codes ( Double Input) , Expandable up to 128 Codes through J1 Jumper

64 Key Infrared Remote Controller using PT2222M – NEC Code – [Link]

STEP/DIR SIGNAL TO CW/CWW SIGNAL CONVERTER FOR CNC & MOTION CONTROL SYSTEMS

Simple Circuit converts Step/Dir. signal into to double drive CW/CWW Pulse, Mach3 and few Hobby CNC software’s provides Step/Direction pulse output to drive stepper motor drivers.

Various AC servo works with double CW/CCW pulse. This circuit is solution to interface such AC CW/CCW pulse based driver with Mach3 or other CNC software’s. Circuit designed around 7408 and 7404 IC, board support 5V or 24V supply. Open Collector output can be interface with 24V system by changing output resistors.

Features

  • Supply 7V 24V DC
  • On Board Power LED
  • Inputs and Outputs Header Connector
  • On Board ERTH (Earth) Signal provided for chassis ground to avoid any noise

STEP/DIR SIGNAL TO CW/CWW SIGNAL CONVERTER FOR CNC & MOTION CONTROL SYSTEMS – [Link]

4 Channel Relay Board

4-channel-relay-board-i044-500x500

4 Channel Relay Board is a simple and convenient way to interface 4 relays for switching application in your project. Very compact design that can fit in small area, mainly this board is made for low voltage applications.

Features

  • Input supply 12 VDC @ 170 mA
  • Output four SPDT relay
  • Relay specification  10A/24V DC
  • Trigger level 2 ~ 5 VDC
  • Header Connector for connecting power and trigger voltage
  • LED on each channel indicates relay status
  • Power Battery Terminal (PBT) for easy relay output and aux power connection
  • Four mounting holes of 3.2 mm each

4 Channel Relay Board – [Link]

Large Current Relay with Dual Output DC-DC Converter for Hobby CNC/Router

large-current-relay-m119-500x500

Single Channel Large current relay board with dual DC-DC converter board is mainly designed for Hobby CNC, Routers, and Plasma cutters.

Hobby CNC controller requires multiple DC outputs to drive various things.  This board provides 5V DC and 12V DC 1Amp each. The dual supply helps driving LPT breakout board, Sensors, Limit switches and few other things that require 5V and 12V.

The Relay has large current handle capacity and can be used to drive spindles, solenoids, and other things that require switching. The relay requires TTL High signal to trigger or it has the capability to even trigger with GND signal.

Features

  • Supply Input 15V to 35V DC
  • DC Outputs 5V @ 1A & 12V 1A
  • On Board LED for Relay Output
  • Relay Contact 20Amp NC and 30 Amps No 230V AC
  • Relay Trigger 5V TTL in or GND input
  • Screw Terminal and 2 Pin Header Connector Provided for Supply Input
  • Screw Terminal and 2 pin header provided for 5V DC & 12V DC Output
  • 3 Pin Screw Terminal Provide for Relay output Connections NO/NC
  • 3 Pin Header Connector for TTL + Signal Trigger, and Low GND signal Trigger
  • Close The Jumper to trigger rely with low GND signal input

Large Current Relay with Dual Output DC-DC Converter for Hobby CNC/Router – [Link]

PWM Fan controller

lucky-resistor-11

Lucky Resistor has build a PWM fan controller using Arduino and DHT22 sesnsors.

The fan controller described on this project page, controls one or more PWM controlled 12V PC fans. It uses the input from two precise DHT22 based temperature sensors. The MCU is an Arduino Uno, which is powered using a 12V power source. On top of the Arduino Uno, there is the Adafruit data logger shield — and on top of that is an Adafruit LCD shield. The software is a simple, custom written PID controller.

PWM Fan controller – [Link]

A dual sensor fan controller build

pic-board2

Kerry Wong has designed and built a dual sensor fan controller:

To make the design more useful, one channel is marked as optional (see components with * on the silkscreen) so that you can build either a single sensor fan controller or a dual sensor one. With two sensors, the control signal is or’d with both of the sensor input and if either side of the temperature exceeds a predefined threshold the fan will be turned on. This is useful in situations where power devices from multiple channels share the same heat sink

A dual sensor fan controller build – [Link]

LipSync – An Assistive Device For Smartphone Use

Smartphones and mobile devices are diving deeply in our lives and make a lot of things much easier than before. So, having a smartphone or a mobile device became one of life’s necessities for everybody. But unfortunately, there is still a big challenge for people with limited use of their arms to use and benefit from these devices.

A group of developers tried to help these people and increase their accessibility to the smartphones through “LipSync”. It is an Arduino-based assistive device which aims to increase the ability to use touchscreen devices through a mouth-operated joystick with sip and puff controls.

lipsync

The developers team, as they mentioned in the project page, focused on creating a robust and easy to build device, designing a device housing which can be 3D printed, and making it flexible for a variety of wheelchairs.

LipSync is based on Arduino Micro, a microcontroller board based on the ATmega32U4 equipped with a Bluetooth module for connecting with the smartphone and send the appropriate instructions.

Arduino Micro - Image courtesy of Arduino.cc
Arduino Micro – Image courtesy of Arduino.cc

Two main sensors were used in this project. An Analog 2-axis Thumb Joystick used to manipulate a cursor on the device screen, and a Pressure Sensor to catch sip and puf controls and simulate the actions of “tap” and hitting the back button, respectively.

MPXV7002DPT1CT-ND Pressure Sensor - Image courtesy of Digi-Key
MPXV7002DPT1CT-ND Pressure Sensor – Image courtesy of Digi-Key

lipsync3d

In addition to the main control functions, move the cursor, tap, and go back, this device can simulate additional secondary functions such as “tap and drag” and “long tap and drag”.

LipSync is an open source project. Schematics and PCB files are available here, but the 3D printer files and arduino code will be made public later.

lipsyncpcb

To read more details about LipSync visit the project page on hackaday.io, where you can follow it and join the development team.

12V NE555 PWM Controller

FBL1YSEISCAQG0A.MEDIUM

baelza.bubba @ instructables.com build his own PWM controller which is able to operate as a 12V Motor Speed Controller, LED Dimmer, Heat controller, voltage controller for an electrolytic etcher etc.

 

I did some hunting around on the interweb and found a pretty good starting point in Circuits Today, but then, I needed to make some modification and tweaking of the circuit. I wanted to add in a toggle switch, a DC power socket and a 2 pin screw terminal into the design to make it easier to make and use.

12V NE555 PWM Controller – [Link]