Hardware category

Da Vinci Color, The First Full Color 3D Printer

3D Printing became an important process in prototyping, and sometimes in manufacturing. But till now, the filament types available in the market are limiting printing colors. Although there are many multi color printers, printing a design in full color is still a dream.

XYZprinting has announced its da Vinci Color printer, the world’s first full color 3D printer. In fact, the printer combines inkjet techniques with Fused Filament Fabrication (FFF). It uses ink cartridges to drop pigment onto each layer of plastic filament as it prints.

da Vinci Color Specification

  • Build volume: 200 x 200 x 150 mm
  • Layer resolution: 100-400 microns (0.1-0.4 mm)
  • Filament material: 3D Color-inkjet PLA / PLA / Tough PLA / PETG
  • Ink type: Separate ink cartridge (CMYK)
  • Nozzle diameter: 0.4 mm
  • Print bed: EZ-removable print bed (non-heated)
  • Print bed leveling: Auto-leveling
  • XYZ position precision: X/Y 12.5 micron, Z 4 micron
  • Build speed: Average: 30-60 mm/sec, Max: 120mm /sec
  • Print head travel speed: 30 – 300 mm/s
  • Host software: XYZmaker
  • File type: AMF, PLY, OBJ, STL, 3CP
  • Power requirements: 100-240 V, 50-60 HZ
  • Connectivity: WiFi, USB 2.0 port
  • Operating temperature: 15-30℃

Fortunately, the printing base area of ​​20 x 20 x 15 cm provides a large build volume in a relatively small housing. The machine prints at an average resolution of 100-400 microns, so the lines where two colors meet can get a little blurry when viewed up close, but the output is generally pretty impressive. It’s basically an ink jet printer that outputs in 3D, so the results aren’t quite as sharp as a professional production job.

In addition, the software is easy to use and supports most common 3D file formats, amf, ply, obj, stl, and 3cp. Users of any age can download designs and add colors, or create their own colored prototypes from scratch. Thus, with an embedded color touch screen, users can control the printer and do some setting easily, such as connecting to the home wireless network. Also, da Vinci Color has many sensors that indicate broken material during the printing process, allowing users to save time and filament.

Applications of da Vinci Color printer

This types of 3D printer may have a several areas of applications, some of them according to the manufacturer are:

  • Animation and film: Enables production of prototypes in color that can be used immediately after printing
  • Architects and designers: The production of solid models, miniatures and prototypes provides customers with a better appreciation of design concepts.
  • Small businesses: The 3D printer helps to create your own company models and products with 3D full-color printing. Color printing reduces costs and speeds up production. The use of PLA filaments ensures that time and money is not wasted on post-processing.
  • Schools: Enables color printing by students in 3D, let their creativity run wild.
  • Model makers and collectors: All types of model figures and accessories can be produced including comic book figures rendered in authentic colors. You can also print the original designs.

The printer price is $3,500. But it is available now for pre-ordering for only $3,000 on XYZ official store, with estimated shipping date at the end of November. Beyond that, you have to buy four ink cartridges (cyan, magenta, yellow, and black) for $65 each, and you need a special filament that works with the ink, which costs $35 per roll.

IkaScope: a wireless oscilloscope probe

IkaScope is a wireless oscilloscope probe that allows to observe the change of electrical signals over time. The probe is a handheld device, portable and fits perfectly in the hand and pocket. By using high-speed Wi-Fi connection, IkaScope wireless oscilloscope probe communicates with laptop, tablet or smartphone to share the acquired data on the screen. The IkaScope wireless oscilloscope probe is compatible with the most popular mobile and desktop operating systems. The probe has a 200 MSPs ADC, Spartan 3 FPGA and adequate battery capacity (450 mAh). Energy saving settings and downtime moments manage the energy efficiency. The probe comes with a ground clip and a USB charging cable. Especially relevant is the patented ProbeClick technology of IkaScope: all electronic circuits are powered only when the the probe is pressed (figure 1). The probe tip is also used to start the data acquisition. ProbeClick technology allows to save power and measure without remembering to press the run / stop button of a classic oscilloscope.

wireless oscilloscope probe
Figure 1: IkaScope wireless oscilloscope probe

The probe technology and user interface

ProbeClick represents a simple innovative mechanism to manage the data acquisition by probe tip. Simply by pressing the probe, the device starts data capturing and streaming process on the screen using the wi-fi connection. In addition, by releasing the probe, the acquisition stops and automatically the data is available in the storage/cloud (figure 2). IkaScope application is the user interface to capture, measure and analyze analog signals. From the download page you can download the latest version of IkaScope for your prefered Desktop OS.

wireless oscilloscope probe
Figure 2: IkaScope during a testing process

 

IkaScope can be configured as a wireless hotspot. It will remember access points and will connect instantly without having to enter your login password. Moreover, IkaScope application has a share button at the top left of the screen. Just click on it to share a screenshot of the measurement.

General specifications

  • Model name: WS200.
  • Communication: WiFi 802.11 b/g/n/e/i 2.4GHz.
  • Connection: Access Point or Station.
  • Battery charging connector: Micro USB.
  • Input contact: ProbeClick.
  • Operating Temperature: 10°C to 35°C.
  • Altitude < 2000m.
  • Protection Input level: Sample test voltage: 253 VAC 1 min.
  • Input to charging port isolation: Saple test voltage: 1100 VAC 1 min.
  • Battery: Built in Lithium / 420mAh
  • Application compatibility: Windows / Mac / Linux / Android / iOS.

Measurement specifications

  • Max sample rate: 200MSps.
  • Analog Bandwidth(-3dB compression): 30MHz at -3dB.
  • Input Voltage: +/-40V range CAT1.
  • Galvanic isolation: Between Input and Charging port.
  • Coupling: AC (true) / DC.
  • Input Impedance: 1MOhm || 14pF.
  • Voltage resolution: 100mV/div up to 10V/div.
  • Max Trace refresh rate: 250 FPS.
  • Sample resolution: 8 bits.
  • Analog Offset range: +/-20V to +/-40V.
  • Memory depth: 4K Points (4 x 1000 points burst buffers).
  • Channel: 1
LiPo breadboard power supply

Versatile And Open Source LiPo bBattery Breadboard Power Supply

Orlando Hoilett from Calvary Engineering LLC designed a  versatile Li-Po battery breadboard power supply and wrote an Instructables on it. This power supply outputs 3.3V to the breadboard and takes input from a single-cell LiPo battery. The breadboard power supply also has the ability to charge the battery without needing to separate it from the circuit board. More importantly, this project is licensed under Open Source Hardware which means anyone can modify, distribute, make, and sell this design.

LiPo bread board power supply
LiPo breadboard power supply

Key Components

The complete BOM is available at the GitHub repository.

  • JST connector
    This connector connects directly to the LiPo battery.
  • 3.3V regulator, AP2210K
    3.3V logic is getting increasingly popular among electronics hobbyists and engineers. Also, boosting 3.7V of a LiPo battery to 5V can induce quite a bit of switching noise on the power supply. Linearly converting 3.7V to 3.3V is the best way to avoid this problem.
  • Battery Charger, MCP73831T
    This power supply has a charger built into the board so you can charge the battery without removing it from the power supply.
  • Voltage Selection Jumper
    The voltage selection headers are 3 pin male headers and they are labeled as 3.3V (or VReg) and VRAW (or LiPo). Connect the center pin to 3.3V to get power from the regulator. Connect the center pin to VRAW to get power directly from the LiPo battery.
  • DPDT Switch
    This switch lets you power down the board without removing the battery.
  • LED indicators
    LEDs are used to indicate the current status of the board.

Details

This board breaks out the LiPo battery to the breadboard power rails on both sides. It has a DPDT switch to power down the board. The AP2210K IC has an ENABLE pin which is pulled down to the ground using the DPDT switch in order to enter the low power mode. In low power mode, the regulator and all the LEDs get disabled and draws almost no current from the LiPo. More about the AP2210K regulator IC is on this datasheet.

LiPo breadboard power supply schematic
LiPo breadboard power supply schematic

Another great feature of this breadboard power supply as mentioned earlier is, it incorporates an MCP73831T LiPo battery charger IC. It is a widely used PMIC (power management integrated circuit) for charging LiPo batteries. The LiPo battery should be connected to pin 3 (VBAT) and 5V should be applied to pin 4 (VDD).

The chip starts charging as soon as it detects 5V input and stops charging when the battery is full. Charging current is limited to USB standard i.e. 100mA by connecting a 10.2K resistor between pin 5 (PROG) and ground. So, it’s completely safe to charge the battery from your laptops USB port. Other host microcontrollers can check the battery status using pin 1 (status pin) of MCP73831T.

Diamond-Based MOSFETs Are Now Real

A research group at Japan’s National Institute for Materials Science (NIMS) has developed logic circuits equipped with diamond-based metal-oxide-semiconductor field-effect-transistors (MOSFETs) at two different operation modes – a first step toward the development of diamond integrated circuits operational under extreme environments.

Is Diamond Suitable for this?

In fact, diamond has high carrier mobility, a high breakdown electric field and high thermal conductivity. Therefore, it is a promising material to use in the development of current switches and integrated circuits. Specifically to operate stably at high-temperature, high-frequency, and high-power. However, it had been difficult to enable diamond-based MOSFETs to control the polarity of the threshold voltage. In addition, fabricating MOSFETs of two different modes on the same substrate was a challenge. The modes are:  a depletion mode (D mode) and an enhancement mode (E mode).

Thus, the research group has successfully developed a logic circuit equipped with modes. Thanks to threshold control technique that allowed them create hydrogenated diamond NOT and NOR logic circuits composed of D-mode and E-mode MOSFETs.

Micrograph of a fabricated logic circuit equipped with diamond-based transistors

This study was published in the online version of IEEE Electron Device Letters and it is available at the IEEE Electron Digital Library website. Also, check the official announcement for more details.

Turn Your Fidget Spinner Into A Vision Display

Fidget spinner became a popular toy earlier in 2017. Most of us have one or at least have tried it. Consists of a bearing surrounded by a three-lobed flat structure, it can spin along its axis with a little effort.

Makers and hardware hackers always try to employ different tools to make innovative ideas. Some of those makers hacked a fidget spinner to display custom text while it is rotating. The concept is using a vector of LEDs and turn them on and off at each degree according to the required text. Then, when it rotates very fast our eyes will see the full text as it is displayed together.

At this project on HackadaySean Hodgins created a fidget-shape PCB that fits into the spinner. It consists of an 8-LED vector, a 32-bit microcontroller, an 8-bit shift register, and other electronics parts. It is powered by three 3.6 LiPo cell batteries and can be connected with PC through a micro USB connector.

Component needed for this project:

The total cost is about $20 for all parts, and here is the bill of materials. Also the design of the fidget is available for 3D printing for both the body and the caps. In addition, the microcontroller can be programmed simply with Arduino IDE.

Since this project is fully open source, all resources and files are available for download. The github repository includes the CAD files, firmware code and libraries, PCB design, and some pictures.

Although it is a brilliant project, similar projects had been developed before and had started  funding campaigns. But unfortunately, they weren’t successful and didn’t reach their fund goal.

Finally, if you like this idea you can make it by yourself with the help of this video, which describes how to make it and how it works:

Build And Simulate Quantum Software Applications With Rigetti Forest 1.0

Rigetti Computing is a full-stack quantum computing company. They build hardware and software with fundamentally new integrated circuits that store and process quantum information.

Accordingly, this Silicon Valley company is providing solutions for existing problems that traditional computers can not solve. These problems include the ability to provide molecular simulation showing all interactions and to accurately predict next week’s weather.

An 8-qubit quantum processor built by Rigetti Computing. (PRNewsfoto/Rigetti Computing)

Thus, Rigetti is using quantum mechanics for computation. Adding one quantum bit (qubit) can double the performance. Below is a table mapping the computation power of qubits with classical memories.

Rigetti Computing recently unveiled its Fab-1 facility. A facility which will enable its engineers to rapidly build new generations of quantum computing hardware based on quantum bits, or qubits. In fact, the facility can spit out entirely new designs for 3D-integrated quantum circuits within about two weeks—much faster than the months usually required for academic research teams to design and build new quantum computing chips. It’s not so much a quantum computing chip factory as it is a rapid prototyping facility for experimental designs.

Software is also included

It has also announced its Forest 1.0 service that enables developers to begin writing quantum software applications and simulating them on a 30-qubit quantum virtual machine. Forest 1.0 is based on Quil—a custom instruction language for hybrid quantum/classical computing—and open-source python tools intended for building and running Quil programs.

“Developing quantum computing software is one of the most fascinating and challenging emerging fields of engineering. Today, that field is at the foundational stage, where learning and discovery are at a premium. Our full-stack strategy allows us to run faster, more tightly coupled iteration cycles between hardware, software, and applications.” – Chad Rigetti, Founder & CEO

More details about this API are available on Forest 1.0 official page and this blog. Also watch this workshop video by Rigetti:

Bulgarian National Innovator Creative Spaces

Few days ago, a group of 10 young and experienced people launched a Kickstarter campaign for their new socially significant project “Innovator Creative Spaces“. It is a national network of co-working spaces that cover the whole country of Bulgaria.

The goal of this project is to build creative centers that provide hi-tech workshops for software development and hardware prototypes. It will also have modern tools for prototyping and production laboratories, focused on digital technology, electronics and production technologies.

The creative spaces are targeting enthusiasts, young entrepreneurs and researchers, providing them with required tools and environment to design, make, hack, invent and learn. Their long term goal is to turn Bulgaria into the Silicon Valley of Eastern Europe.

This list of tools is planned to be held in the labs:

  • 3D printers and 3D scanners
  • Laser cutter
  • CNC router
  • CNC lathe
  • Water cutting (water jet cutter)
  • Advanced circuits Lab LPKF Protolaser S
  • CNC PCB Plotter
  • Internet of Things
  • Virtual Reality lab
  • Open Hardware lab
  • Arduino kits
  • Sewing Machines
  • Sergers
  • Embrodiery machines
  • Knitting machines, Soldering irons, Grinders, Vises, Electrocautery
  • Woodworking Facilities
  • Assembly test
  • Other electronic equipment, woodworking tools, measurement gadgets such as micrometer, calipers, etc. And other tools (needed for hacking, creating or fixing just about any project)

Besides the main advantages, the teams see that the co-working spaces will also help building a friendly, encouraging, collaborative and supportive community. The community would enable specialists to enjoy a higher standard of living, achieved by qualification training and mentorship.

At the first phase of the project, only 500 of 1300 square meters will be used. The space includes workshops for different types of machines, separated mini-offices, bar and kitchen, library, conference room, exhibition area, and assembly area.

In addition to membership subscription, the project will provide makers with other services such as prototyping, 3D printing, laser cutting, mentoring and business development, design and branding, events consultations , and more.

We are confident that our project not only helps to deal with youth unemployment, but also improves the re-qualification opportunities and entrepreneurship by discovering new possibilities for personal development in Bulgaria. We believe that the future of our country is in the capable hands of young and pro-active people and gives the fact that a lot of successful start-ups around the world.

If you are interested in supporting this project, you can do that by backing it on Kickstarter and by sharing it with you friends.

96-Layer Memory Chips By Toshiba

The need for larger memory storage for smartphones will never stop, especially with the continuous development of larger and stronger applications. This need is always pushing semiconductor manufacturers to keep trying to fit as much bits as possible in  smaller volumes and with lower costs.

To achieve this, memory chips are now growing in three dimensions instead of two. Recently, Toshiba has developed a new 96-layer BiCS 3D flash memory device with a storage capacity of 32 GB. The new device meets market demands and performance specifications for applications that include enterprise and consumer SSD, smartphones, tablets and memory cards.

This memory chip was built with three bits per cell, known as triple-level cell (TLC) technology. Stacking layers and manufacturing process increase the capacity of each chip with 40% per unit size. They also reduce the cost per bit, and increase the manufacturability of memory capacity per silicon wafer.

In order to add more layers to the chip, Toshiba is working on increasing the number of bits in every cell. In the near future, it will apply its new 96-layer process technology to larger capacity products, such as 64 GB. It will also develop chips with QLC (quadruple-level cell) technology.

By stacking 64 layers of QLCs, the engineers at Toshiba have created a 96-gigabyte device. Integrating 16 of them in one package will achieve a capacity of 1.5 TB, that corresponds to 12 trillion bits.

If you are interested, you can check these out at the 2017 Flash Memory Summit in Santa Clara, California from August 7-10.

Source: elektor

RandA, Combining Raspberry Pi & Arduino

Two years ago, open electronics had produced “RandA“, an Atmega328-based board for Raspberry Pi to deliver the advantages of both, Raspberry Pi and Arduino. Earlier this month, an updated version of RandA has been released to be compatible with Raspberry Pi 3.

RandA is a development board that leverages the hardware equipment and the computing power of Arduino with its shields, and the enormous potential of the Raspberry Pi. It features Atmega328 microcontroller, has RTC (Real Time Clock) module, power button and sleep timer, connectors for 5 volts and connectors for mounting Arduino shield.

Combining these two platforms is a way to exploit specific characteristics of both. Raspberry Pi could use Arduino as configurable device, and Arduino might work as a controller for Raspberry Pi allowing access to complex environments like the network, allowing complex processing or access to multimedia.

RandA was created at first for Raspberry Pi 2 and B+, using the first 20 pins to connect them, the serial port for programming the Atmega328 and for communication with Raspberry Pi. With the enhancements that come with the third version of Raspberry Pi, such as upgrading CPU to a quad-core 64 bit ARMv8 clocked at 1.2 GHz and adding WiFi and Bluetooth transceivers, there were some structure modifications that require updating the RandA.

Raspberry Pi 3 uses the standard UART0 serial port for connection via the Bluetooth interface equipping version 3. Therefore, it is no longer available on GPIO14/15 as it was in the first and second version of Raspberry Pi. The secondary UART1 serial is configured on those pins instead, but this serial port is based on a simulated serial not on a preset UART hardware. In particular, its clock is connected to the frequency of the clock of the system which varies in function of the load in order to save energy.

To solve this, the software is configured to recover the UART0 on GPIO 14/15 pins without modifying any hardware parts. This way will disable the Bluetooth peripheral, but the WiFi is still working and you can use Bluetooth by connecting a Bluetooth dongle via USB.

To know more about the new version of RandA you can review this post, and reading this post to learn more about RandA in general. You can get your RandA board for about $36 and this tutorial will help you get starting with it.

Sonnet Off-Grid Device, The Smartphone Walkie-Talkie

At Sonnet Labs, a group of avid outdoor enthusiasts aim to democratize mobile communication with technologies that enable smartphones to send text messages, image data, and GPS locations without Internet connectivity, cellular coverage, or satellite reception.

No need for cellular grid with Sonnet

Therefore, they launched their product, Sonnet, the smartphone walkie-talkie! Sonnet is a wireless device that brings the long-range wireless communication capability of the 2-way radio (walkie-talkie) to smartphones. In addition, it enables device-to-device data transfer through low-power, long-range radio frequencies dependently on cellular grids and infrastructures.

Accordingly, Sonnet can connect wirelessly to any smartphone. Also, it allows sending data up to many miles in distance to other smartphones that already are using Sonnet.

More features to come…

Sonnet uses mesh networking in order to reach users out-of-point relaying on sending data privately through other users in area. This data travelling through Sonnet is already end-to-end encrypted with AES. At the same time, the Sonnet Wi-Fi connection is protected with WPA/WPA2.

It also has the ability to charge your phone. Thanks to the 4000mAh battery capacity, Sonnet can charge your smartphone through its USB port.

Moreover, you don’t need to install software in your smartphone. It is enough to have an access to the app through your browser. The team tailored this feature to allow users who don’t have internet access to use the device easily.

Above all, one of the amazing features included is SOS mode. In case of emergencies. you can press the panic button. Next, Sonnet will send your GPS location and your message to all users in range.

Full specifications of Sonnet below:

In conclusion, Sonnet is the wireless device that enables you send instant messages, voice recordings, image data and GPS coordinates even if you don’t have cellular coverage or Internet access.

Sonnet is now live on a Kickstarter campaign and has already achieved 290% of its required funds. The campaign still has 28 days to go, where you can pre-order two pair of Sonnet for $89! Also check the official website for more details.