IC category

LTC7003 – Fast 60V Protected High Side NMOS Static Switch Driver

The LTC7003 is a fast high side N-channel MOSFET gate driver that operates from input voltages up to 60V. It contains an internal charge pump that fully enhances an external N-channel MOSFET switch, allowing it to remain on indefinitely. Its powerful driver can easily drive large gate capacitances with very short transition times, making it well suited for both high frequency switching applications or static switch applications that require a fast turn-on and/or turn-off time. When an internal comparator senses that the switch current has exceeded a preset level, a fault flag is asserted and the switch is turned off after a period of time set by an external timing capacitor. After a cooldown period, the LTC7003 automatically retries.

LTC7003 – Fast 60V Protected High Side NMOS Static Switch Driver – [Link]

Integrated 36V buck battery charger provides seamless backup power

By Graham Prophet @ eedesignnewseurope.com:

LTC4091 is a complete lithium-ion battery backup management system for 3.45V to 4.45V supply rails that must be kept active during a long duration main power failure. The LTC4091 employs a 36V monolithic buck converter with adaptive output control to provide power to a system load and enable high efficiency battery charging from the buck output.

Integrated 36V buck battery charger provides seamless backup power – [Link]

Inside Intel’s first product: the 3101 RAM chip held just 64 bits

Ken Shirriff takes a look inside the 3110 RAM chip from Intel. He writes:

Intel’s first product was not a processor, but a memory chip: the 31011 RAM chip, released in April 1969. This chip held just 64 bits of data (equivalent to 8 letters or 16 digits) and had the steep price tag of $99.50. The chip’s capacity was way too small to replace core memory, the dominant storage technology at the time, which stored bits in tiny magnetized ferrite cores. However, the 3101 performed at high speed due to its special Schottky transistors, making it useful in minicomputers where CPU registers required fast storage. The overthrow of core memory would require a different technology—MOS DRAM chips—and the 3101 remained in use in the 1980s.3

Inside Intel’s first product: the 3101 RAM chip held just 64 bits – [Link]

MEMS — A 22-billion-dollar-worth industry by 2018

Thanks to Micro-Electro-Mechanical-Systems MEMS technology, which will be a 22-billion-dollar-worth industry by 2018, our mobile phones are equipped with accelerometers and gyroscopes so they know the direction and rotate our mobile screen as needed. The applications of MEMS had expanded a lot in various fields like: energy harvesting using piezoelectric effect, microphones, gyroscopes, pressure sensors, accelerometers and many more. Moreover, this micro-level technology is going to be nano-level with Nano-Electro-Mechanical-Systems NEMS.

Image is adapted from HowToMechatronics.com YouTube channel

The basic idea behind MEMS is about having moving parts inside the silicon chip. Accelerometers for example, one of the most famous applications of MEMS, sense the acceleration by measuring the change of the capacitance C1, C2 between a moving part/mass and fixed plates. So when acceleration is applied in a particular direction it can be detected and measured.

Image is adapted from engineerguy YouTube channel

The amazing “How a smartphone knows up from down” video presented by Bill Hammack (engineerguy) can demonstrate in a clear way the principle of MEMS.

Last but not least, MEMS has applications in medical and health related technologies like Lab-On-Chip. LOCs can integrate a laboratory function in a single chip. So MEMS may not only solve technical problems, but they may also play an important role in solving problems in human health field.

“Genotyper” device. via NIAID

2-3A, 42-Vin Silent Switcher offers low-EMI regulation

LT8609S is a 2A (3A Peak), 42V input synchronous step-down switching regulator. The synchronous step-down Silent Switcher 2 Delivers 93% efficiency at 2 MHz with ultralow EMI/EMC emissions. By Graham Prophet @ eedesignnewseurope.com:
The LT8609S design reduces EMI/EMC emissions due to very well controlled switching edges, its internal construction with an integral ground plane and the use of copper pillars in lieu of bond wires. This improved EMI/EMC performance is not sensitive to board layout, simplifying design and reducing risk even when using two-layer PC boards.
2-3A, 42-Vin Silent Switcher offers low-EMI regulation – [Link]
Renesas Embedded SRAM prototype with SOTB Structure

Renesas Electronics Achieves Lowest Embedded SRAM Power of 13.7 nW/Mbit

Renesas Electronics Corporation announced the successful development of a new low-power SRAM circuit technology that achieves a record ultra-low power consumption of 13.7 nW/Mbit in standby mode. The prototype SRAM also achieves a high-speed readout time of 1.8 ns during active operation. Renesas Electronics applied its 65nm node silicon on thin buried oxide (SOTB) process to develop this record-creating SRAM prototype.

Renesas Embedded SRAM prototype with SOTB Structure
Renesas Embedded SRAM prototype with SOTB Structure

This new low-power SRAM circuit technology can be embedded in application specific standard products (ASSPs) for Internet of Things (IoT), home electronics, and healthcare applications. The fast growth of IoT is requiring all the devices be connected to a wireless network all the time. Hence, products must consume less power to prolong battery life. With this new technology applied, much longer battery life can be achieved enabling maintenance-free applications.

One essential part of the development of IoT applications is the miniaturization of end products. This can be achieved by lowering battery capacity requirement of ASSPs. As an effort to reduce the power consumption in ASSPs for the IoT, there is a technique in which the application is operated in the standby mode and only goes to the active mode when data processing is required.

Now, the conventional way of saving power is to store all important data to an internal/external non-volatile memory and cut off the power supply to the circuit. If the wait time is long enough, this method is effective. But in most of the cases, the device has to switch between standby mode and active mode very quickly causing data-saving and restarting process extremely inefficient. There are even cases where, inversely, this increases power consumption.

In contrary to above, the new technology by Renesas Electronics uses a method where power consumption in standby mode is reduced a lot enabling switching operation to be performed frequently without leading to increased power consumption. Hence, it’s no more required to save data to non-volatile memory. This improves the efficiency further.

The low-power embedded SRAM which is fabricated using the 65 nm SOTB process, achieves both the low standby mode power consumption and increased operating speed.  Such features were difficult to achieve with the continuing progress of the semiconductor process miniaturization.  Renesas plans to support both energy harvesting operation and development of maintenance free IoT applications that do not require battery replacement by enabling ASSPs that adopt the embedded SRAM with SOTB structure.

To learn about all the complex technical information which is not covered in the scope of this article, visit the press release page of Renesas Electronics.

Next-generation Bluetooth Low Energy SoC from ST

Graham Prophet @ eedesignnewseurope.com introduces BlueNRG-2, the latest BLE solution from ST. He writes:
Introducing its latest-generation Bluetooth Low Energy (BLE) System-on-Chip, ST Microelectronics highlights low power, small size, and high performance to enable widespread deployment of energy-conscious, space-constrained applications with BLE connectivity. The device provides state-of-the-art security and is Bluetooth 5.0-certified
Next-generation Bluetooth Low Energy SoC from ST – [Link]

20V, 4 MHz, synchronous 2x 6A step-down regulator in 20 sq mm

Graham Prophet @ eedesignnewseurope.com presents the LTC3636 and LTC3636-1 synchronous step-down regulator from Linear:
LTC3636 and LTC3636-1 are high efficiency, 4 MHz synchronous dual output buck regulators that incorporate a constant frequency/controlled on-time, current mode control scheme with phase lockable switching frequency. Their design architecture reduces conducted and radiated emissions.
20V, 4 MHz, synchronous 2x 6A step-down regulator in 20 sq mm – [Link]

FT234XD – USB to BASIC UART IC

The FT234XD is a USB to serial UART interface with optimised packaging (3mm x 3mm 12 pin DFN) for smaller PCB designs and the following advanced features. Check datasheet on the link below.
FT234XD – USB to BASIC UART IC – [Link]

Micropower, Rail-to-Rail, 300kHz Op Amp with Shutdown in tiny package

Op Amp Consumes Only 4.5µA and Offers 300kHz BW in 0.73mm x 1.07mm WLP and SOT-23 package.

The MAX40006 op amp features a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered applications such as handsets, tablets, notebooks, and portable medical equipment. This CMOS op amp features an ultra-low input-bias current of 1pA, rail-to-rail input and output, low supply current of 4.5µA, and operates from a single 1.7V to 5.5V supply.

Micropower, Rail-to-Rail, 300kHz Op Amp with Shutdown in tiny package – [Link]