IoT category

Seeed Launches Engleye-530s, A Samsung ARTIK Powered Board in a Raspberry Footprint

The Samsung ARTIK™ is an integrated IoT platform consisting of enterprise-grade modules, cloud services, and end-to-end security for the design and development of robust IoT solutions. ARTIK empowers developers with easy-to-use APIs and SDKs, extensive documentation and rich tools. It hides the complexity inherent in IoT behind open, enterprise-grade APIs. Seeed Studio, a household hardware company, has launched the Eagleye 530s.

Eagleye 530s

The Eagleye 530s released by Seeed is a maker board in a Raspberry Pi form factor and powered by the Samsung Artik-IoT Platform. The Eagleye incorporates the Samsung ARTIK 530s, a 1GB system-on-module (SoM). Samsung Artik 530/530s is a module meant for the Internet of Things; it’s based on a quad-core Arm Cortex A9 processor for local data processing and multimedia engine to handle audio and video processing. The module provides support for Ethernet, dual band WiFi, Bluetooth 4.2, and 802.15.4/Zigbee and Thread connectivity. Eagleye 530s supports full HDMI, MIPI camera interface, video, and audio media.

As compared to the original Raspberry Pi 3, The Eagleye has an ARM Cortex A9 installed with four cores clocking at 1.2 GHz. They both have a 1G of RAM, while the Pi 3 requires a micro SD card as it’s storage medium, the Eagleye doesn’t, it comes with a 4GB of eMMC flash memory, so micro SD card is optional. It offers much more than it’s competing product, it supports the wireless protocol Zigbee, making it suitable for IoT gateway applications.

The following are the Eagleye 530s board specifications:

  • Processor– Quad Core Arm Cortex A9 processor @ 1.2GHz
  • System Memory – 1GB DDR3
  • Storage – 4GB eMMC flash, SD card slot
  • Connectivity
    • 802.11a/b/g/n dual band SISO (2.4G/5G)
    •  Bluetooth 4.2(BLE+Classic)
    • Zigbee/Thread 802.15.4
    • Gigabit Ethernet port (RJ45)
  • Video Output – HDMI port
  • Audio – 1x Headphone Jack
  • Camera– 1x MIPI CSI header
  • USB – 2x USB 2.0 type A ports, 1x micro USB OTG Type-B
  • Debugging – 1 x Micro USB UART Type-B
  • Expansion – 40-pin GPIO expansion header compatible with Raspberry Pi
  • Power Supply – 5V via DC jack or micro USB UART connector
  • Dimensions – 87mm x 58.5mm x 20mm
  • Weight – 50g

Eagleye 530s will allow Samsung ARTIK developers to build on the powerful Raspberry and Makers ecosystem easily. Eagleye 530s is available for preorder on the Seeed website. Estimated ship date at the end of April 2018.


Neutis N5 is a Tiny Quad Core System on a Module

Neutis N5 is a tiny quad-core system on a module from Emlid. Emlid which is known for its Navio2 Autopilot HAT for the Raspberry Pi and some other drone accessories is venturing into the mainstream embedded market with its Neutis N5 computer on a module.

Neutis N5

Unlike the other previous boards and products, the Neutis N5 is expected to be a complete spinoff from Emlid mostly due to the fact it is on display on a new website and has no reference on the Emlid website.

In a very tiny (yes, really tiny) package, of about 41 x 29.5mm square with a 4.3mm thickness, the Neutis packed a host of features and power. At the heart of the Neutis is a 64-bit quad-core ARM® Cortex®-A53 processor with a max speed of 1.3GHz and based on the prevalent Allwinner H5. Also comes powered by the Mali 450 MP4 GPU. The Neutis N5 ships with a RAM of 512 MB DDR3, a storage option of 8 GB eMMC, has onboard Wi-Fi (802.11 b/g/n), Bluetooth (Bluetooth 4.0 dual-mode BLE), and an extended temperature range. It has a tamper-resistant dedicated crypto chip for storing cryptographic keys, unique ID, random number generation and many more.

Neutis N5 Pinouts

This module runs modern Linux kernel based on the mainline version. It’s based on the industry-standard Yocto build which provides support to craft a custom Linux distribution or use the pre-configured Debian. Neutis comes with an OTA support, providing an easy and safe way to deliver updates to the devices in the future.

The Neutis comes with a dual 80-pin expansion connector with some I/O ports being multiplexed. It provides interfaces for Audio, Ethernet, HDMI, USB, OTG, SPI, I2C, UART, SDIO, PCM, Line-out/Line-in, and up to 38x GPIO ports. The module runs on 3.3V and core voltage of 1.1-1.3V power and supports a temperature range of -25 to 85°C.

Neutis Development Board

The module comes with FCC and CE certification (pending approval) which will help streamline product certification. Each module has a unique ID which allows convenient management of product patch and includes a time-saving parallel flashing tool. In addition to the module, Emlid is also offering a development kit that provides all the peripheral interfaces on standard ports and 0.1” (2.54 mm) pitch pins for quick prototyping. The kit extends out the following ports of the COM (Computer on a Module):

  • 2 x USB 2.0 Type A
  • 1 x USB 2.0 OTG Micro-B
  • 1 x HDMI
  • 1 x 3.5 mm jack A/V out
  • 1 x MicroSD card slot
  • 1 x RJ45 10/100M Ethernet

The Neutis N5 will be available in April for $49 for single units, with volume discounts available. More information about the Neutis N5 product can is found on the product website.

SODAQ Cellular IoT Development Kit Supports LTE-M, NB-IoT, GNSS and Arduino

SODAQ wants to provide you with the tools to build for the estimated 25 billion Internet of Things by 2020 using their set of Cellular IoT suite called SODAQ SARA Family.


Several industriy analysts have claimed that we will have 100 billion IoT devices connected and in circulation by 2050, with the majority of them running on the cellular network mostly due to its large-scale access and ease of deployment. We have already seen IoT deployments on 2G networks but the recent movement of Telecom operators into 4G networks and outfacing their 2G networks are paving ways for new IoT focused technologies to be integrated into the 4G networks. Some of these technologies being developed and deployed are the LTE-M and NB-IoT (Narrow Band IoT). NB-IoT focuses specifically on indoor coverage, low cost, long battery life, and enabling a large number of connected devices. LTE-M will allow Internet of Things devices to connect directly to a 4G network, without a gateway, and on batteries.

To facilitate the development of these exciting technologies, SODAQ which previously launched their NB-IoT shield for Arduino last year is incorporating a range of u-blox SARA modules in its design. The SARA modules are available for NB-IoT, LTE-M but also for 2G and 3G. The following are the u-blox Sara modules used in their IoT cellular suite are:

  • SARA-N211 – NB-IoT, band 8 and 20, for the European and African market.
  • SARA-R410M – Dual mode LTE-M and NB-IoT module for all global bands.
  • SARA-R412M – Triple mode module with LTE-M, NB-IoT, and 2G for all global bands.

The SODAQ board is called the SODAQ SARA. The SARA is an Arduino sized and compatible development board running the Atmel SAM-D21 32 bit microcontroller, along with one of the three u-box modules. In addition to the cellular modules, the SODAQ SARA comes integrated with a u-blox SAM-M8Q GNSS module for precise geolocation. SODAQ claims the GNSS module offers more accurate positioning than conventional GPS because it utilizes the Beidou, Galileo and Glonass satellites. It also comes with an accelerometer/magnetometer chip.


SODAQ is also launching a small form factor (SFF) edition of the same board with a size of about 55 x 25mm and still maintains the same functionality on the bigger board. One significant feature of their boards is that you can power the board directly with a solar panel and further program the boards with the Arduino development tools (Arduino IDE).

SODAQ is currently crowdfunding the boards on Kickstarter. With the three different LTE IoT module and two types of boards, SODAQ is offering a total of 6 different versions of its boards:

  • SARA-N211 NB-IoT (Band 8/20) for 90 Euros
  • SARA-R410M NB-IoT  + LTE Cat M for 100 Euros
  • SARA-R412M NB-IoT + LTE Cat M + 2G fallback for 110 Euros with 1,200 mAh battery
  • SFF N211 for 95 Euros
  • SFF R410M for 105 Euros
  • SFF R412M for 115 Euros with 800 mAh battery

If all goes well in the Kickstarter campaign and SODAQ raises the required €25,000 over the remaining days of its campaign, the Internet of Things Development Suite will start shipping out to backers during March 2018.

Fujitsu Electronics Europe expands its Bluetooth Low Energy portfolio

Adding components from Ambiq Micro and Talent Highland, Fujitsu Electronics Europe has increased its Bluetooth Low Energy portfolio.

The additional products offer customers high integration, low power consumption and flexibility, says Fujitsu Electronics Europe (FEE), and it has produced the ClickBeetle reference platform (pictured) to facilitate the integration of Bluetooth Low Energy products into applications.

Ambiq Micro’s Bluetooth Low Energy components make Bluetooth Low Energy applications more powerful and efficient, claims FEE. The Cortex M4 in Apollo 2 operates at up to 48MHz at only 10-microA/MHz with a deep-sleep current of two micro A. Apollo 1 operates at up to 24MHz at 34-micro A/MHz and has a deep-sleep current of 143-nanoA. Additional components offer the possibility of lowering the deep-sleep current to 22-nanoA. Depending on the requirements, Ambiq Micro offers different bundle packages to combine its Apollo 1 and Apollo 2 microcontrollers or real time clocks with an EM9304 BLE communication chip. Combinations of microcontroller and Bluetooth Low Energy chips are suitable for high-performance applications, while combinations of real time clocks and Bluetooth Low Energy are ideal for cost-sensitive Bluetooth Low Energy beacons. Packages range from BGA, CSP and QFN packages. For very small applications, Ambiq Micro also offers a SoC that combines the Apollo 2 microcontroller and EM9304 BLE in a 4.0 x 4.0mm LGA package with 64 pins.

Customers who would like to integrate Bluetooth Low Energy further can also use a Talent Highland SIP. Components such as a DA14580 with ARM Cortex M0 16 MHz and 42kbyte RAM, 1Mbit SPI flash, crystals, passive components and antenna are bundled in a package measuring only 7.0 x 7.0mm. Thanks to the internal DC/DC converter, the small module also supports three and 1.5V batteries. Depending on the requirements, FEE customers can also create their own package with their own components.

FEE offers its reference platform, ClickBeetle, for application-oriented evaluation and development. It measures just 16 x 26mm and uses a hardware-independent fixed pin layout, making it easy to replace and evaluate Bluetooth Low Energy components, says Fujitsu.

Particle Mesh – A Mesh-Enabled IoT Development Kits.

Particle, which has been known for its collection of  IoT focused development boards, and its Internet of Things (IoT) platform (Particle Cloud) has launched a new set of mesh network-enabled IoT development kits called Particle Mesh. Particle Mesh is expected to provide developers more insight into implementing mesh networking technology. They help to collect sensor data, exchange local messages, and share their connection to the cloud.

Particle Mesh Hardware
Particle Mesh Hardware

Particle Mesh features a new family of mesh-ready devices with Wi-Fi, BLE and LTE connectivity and also integrated with the Particle device cloud. Particle mesh consists of three main boards: The Argon, The Boron, and the Xenon. Each of these Particle Mesh boards has at least one form of outside connectivity option (LTE/3G/2G, Wi-Fi or Bluetooth) and an onboard mesh network hardware to facilitate setting up a mesh network for local communications between sensors and other particle mesh boards. All three devices are built around the Nordic nRF52840 MCU + BLE + mesh radio and follow the Adafruit Feather specification making it compatible with most Adafruit FeatherWing hardware accessories. (more…)

Raspberry Pi Plus Cloudio – A Personal IoT Computer with Drag and Drop Programming

Everybody loves the Raspberry (at least the makers does) and has seen several applications from being blasted to space or powering a self-driving car. Raspberry Pi in its natural state is an ideal platform for IoT development mostly due to its connectivity interfaces like the Bluetooth, WiFi, and Ethernet but no significant development has been done in this space apart from some pretty hacks in the last years. GraspIO in partnership with Farnell Element14 distributor has released the GraspIO Cloudio, a Raspberry Pi add-on board with Drag and Drop programming interface for full suite IoT applications development.
GraspIO Cloudio
Cloudio offers the ability to do drag and drop programming instead of the conventional text-based python programming and is supported on iOS and Android devices. So with just an Android phone, iPhone or iPad, you can start programming and controlling your raspberry pi cloudio based applications. Cloudio incorporates Voice Assistant Capabilities, Internet of Things cloud service, sensor monitoring and dashboard, custom notifications, and even provides off the shelf support with the beautiful IFTTT (“If This Then That”) platform. With the integration of IFTTT, you can easily automate some actions like for examples – if an email is received then send sensor reading or feed the fish for a while, another interesting case is – if a weather forecast states there is a likelihood of rain then closes the cage. Cloudio also provides support for upload program to multi-board at once, a perfect option if you will be managing a large number of boards.
Cloudio and Raspberry Pi
At the heart of the Cloudio board is the Atmel 8-bit AVR Atmega32U4 controller and comes in a portable size that makes it compatible with Raspberry Pi 1/2/3/Zero and ZeroW. It comes with a 0.96″ OLED Screen, a display that can be used for displaying real-time sensor values, custom messages and even supports emojis. The board includes proximity, light and temperature sensors and an extra 3 ADX ports for interfacing with external sensors. The board consists of a proximity, light, and temperature sensors plus 3x ADC interfaces for connecting other sensors such as humidity and motion. With the Cloudio, you will never run out of 5V ports as it comes with three digital 5V output ports. Cloudio does not require any external power supply unit and gets its power from the underlying Raspberry Pi. Other features of the board are a mini 5V servo motor port, a buzzer, RGB LED and tactile switch.
According to Steve Carr, the Global Head of Marketing at Premier Farnell and Farnell element14, he says –
“The versatility of GraspIO Cloudio along with its ease of use will make it popular with makers and innovators in a wide range of application environments. Cloudio, when combined with a Raspberry Pi, is a Full Stack IoT platform meaning that you can programme IoT devices simply and quickly with drag and drop programming on a mobile app. The combination of built-in hardware facilities and access to innovative application software will make Cloudio a valuable addition to the range of tools available to developers of projects involving voice, motion, imaging and cloud interaction.”
Cloudio lets you build and create your own voice assistants using the inbuilt speech recognition feature to control it from your smartphone. It comes with an unlimited cloud service from GraspIO to connect, program, monitor, and manage Cloudio from your mobile device. It is preloaded with 50,000 free Cloud Calls and which a daily 100 non-cumulative calls will be credited to the user’s account for life. Cloudio drag and drop based approach to IoT development is undoubtedly going to help limit the barriers in commencing IoT development.

The GraspIO Cloudio Raspberry Pi add-on board is now available to purchase, priced at $40 and is exclusively manufactured and distributed by Premier Farnell UK Limited and other companies that are members of Premier Farnell Group. You can buy the Cloudio Raspberry Pi add-on board here.


SocioNext MN87900 is a Single-Chip 24 GHz Radio Wave Sensor for the Internet of Things

The Socionext MN87900 from Socionext is a powerful and low-power single-chip microwave sensor at 24GHz with sophisticated sensing capabilities like motion detection, speed and direction detection and so many, that can quickly find applications in the Internet of Things sensing applications.

Socionext MN87900

Unlike PIR sensors like the popular HR-SR501 that can detect motion to about 3 meters at about 120 angles and based on the concept of detecting infrared energy emitted by an object while attempting to determine if it’s a motion or not, the Socionext MN87900 is a microwave sensor that sends out microwave signals and detects the bounce back signals to decide if it’s a motion or not. Microwave sensor uses what we call the Doppler’s Effect concept.

SocioNext MN87900 is a 24 GHz and very tiny, measures about 12mm x 7mm x 1mm making it ideal for the small size requirement in the most Internet of Things application and other applications in the areas of smart-home, automotive or driver assistance systems, medical applications, and many more. Based on a single-chip radio frequency IC (RFIC) that offers a multi-mode sensing capability for detecting stationary or moving objects and measuring the distance and direction of movement, including whether an object is approaching or leaving. This multi-mode sensor capability gives the device ability to re-adapt its functionality to different case scenario without making any single hardware changes.

The RFIC can be used to sense very slow movements (like breathing and heartbeats), and even detect the movement of multiple objects within a 160-degree radius to a distance of about 8 meters away. With slight modification, the RFIC can reach a range of up to 30 meters.

Apart from having powerful sensing capabilities, it is also power friendly. During continuous operation, the sensor can take up to 500mW, but this can be reduced to an intermittent operation where for example, during a one-sixth burst, the sensor can take about 80mW, a very drastic reduction in power. The MN87900 can pass through fabric or resin like materials, and unlike camera-based people detecting applications, the MN87900 doesn’t need to capture or display images to identify people or objects which is handy for privacy-concerned applications.

The MN87900 supports SPI as a form of interface to microcontroller system. Along with the hardware, a simple API system was developed to support the designs of CW, FSKCW, and FMCW mode capabilities to provide distance, direction, and relative velocity.

The following are the SocioNext MN87900 key specifications:

  • Sensing Modes – CW, FSKCW, FMCW (moving or stationary)
  • Detection
    • Motion direction – approaching or leaving
    • Motion speed – up to 200 km/h
    • Range – 0.15 to 8 meters 80°@-3dB, expandable to 30 meters
  • Variable frequency width –  24.15±0.1 GHz
  • Host Interface – SPI
  • High sensitivity – -110dBm
  • Transmission Power: 0.8mW
  • Fast frequency pull-in: 100 µs
  • Automatic adjustment: Built-in initial adjustment function (e.g. adjustment of RC filtering)
  • Power supply voltage: 2.5V
  • Current consumption: 200mA
  • Module size: 12mm x 7mm x 1mm
  • Weight – 145 mg
  • Temperature Range – -40°C to 85°C

The module pricing is currently not available, and more information about the product can be found here.

Espressif ESP32-PICO-KIT WiFi/WLAN+Bluetooth Module

ESP32-PICO-KIT V4 is a mini development board produced by Espressif. At the core of this board is the ESP32-PICO-D4, a System-in-Package (SIP) module with complete Wi-Fi and Bluetooth functionalities. Comparing to other ESP32 chips, the ESP32-PICO-D4 integrates several peripheral components in one single package, that otherwise would need to be installed separately. This includes a 40 MHz crystal oscillator, 4 MB flash, filter capacitors and RF matching links in. This greatly reduces quantity and costs of additional components, subsequent assembly and testing cost, as well as overall product complexity.

Espressif ESP32-PICO-KIT WiFi/WLAN+Bluetooth Module – [Link]


SensiBLEduino – A full fledge ‘hardware-ready’ development kit for IoT and supports Arduino

IoT which translates to the Internet of Things has been a significant buzz for the last five years while disrupting major Industries (from Agriculture, Energy, Healthy, Sports and several others).

SensiBLEduino Development Kit

IoT adoption has seen rapid development in the makers’ world, with different makers and manufacturers producing various forms of boards, chips, software to facilitate quick IoT development. Boards like ESP8266 from Espressif System is used for rapid prototyping and a low-cost choice for Wi-Fi-based IoT applications. Israeli based IoT firm SensiEdge has launched the SensiBLEDuino, an off-the-shelf, hardware-ready development kit based on the open-source Arduino for rapid prototyping of IoT applications.

SensiBLE is a full fledge customizable solution for those wanting to design IoT products. It helps to fasten development with a variety of sensors onboard, along with Bluetooth LE 4.1 capabilities and a low-power ARM® 32-bit Cortex®-M4 CPU with FPU. Some of the main challenges when embarking on IoT product development are; what platform will I use? What sensors are available to achieve my goal(s)? How do I handle connectivity? What about the Cloud Platform to use, and so on. Developers or product designer always result in the use of several boards or modules to achieve this while also increasing the time to bring the product to life. The SensiBLE kit removes most of these fears; it combines hardware and software in tiny form factor to allow developers get their product to market quickly at lower development costs. (more…)

SODAQ ONE board – GPS + LoRa + Solar charger

This is the third generation of our succesful SODAQ ONE board. It is equipped with a solar charge controller and runs on a LiPo or a permanent battery. It has the Ublox Eva 8M GPS module which is not only miniature but with it’s assisted GPS feature it can get a fix within seconds. We’ve now added an extremely low power Accelerometer/Magnetometer. This gives the board a nifty feature where it can stay in (deep) sleep mode until it moves. An essential feature for developing low power devices.

Let’s imagine you want to develop a bicycle tracker using the SODAQ ONE. You would like to track the position of the bike, but only when it has moved. This is possible if you keep the device in deep sleep until it detects motion. If the motion continues for a while, the bicycle may have changed position so only then the GPS will switch on to get a new reading and send this location over the LoRa network. Efficient right? This system will allow you make most efficient use of your battery capacity by only using the GPS when really needed, essentially increasing the battery life of your system.

SODAQ ONE board – GPS + Solar charger board – [Link]