IoT category

PingPong - The versatile IOT Board

PingPong IoT Development Board – Connecting Hardware to the Cloud

Germany-based Round Solutions developed the PingPong, a powerful and flexible hardware platform for IoT and machine-to-machine (M2M) applications. The PingPong can be used for both wired and wireless connections. The modular hardware design can integrate custom-specific applications and communication standards into a single solution platform that has a very small form factor.

The basic hardware platform of PingPong has a 32-bit 200MHz Microchip PIC32MZ microcontroller unit (MCU) running C/C++ code. It supports RTOS or Real Time Operating System which is available as Open Source Software so that developers can adapt their applications individually and bring them to market more swiftly. The base board of PingPong has following features:

  •  A high-speed cellular module
  • A component for high-precision Global Navigation Satellite System (GNSS)
  • An Internet connectivity module
  • USB
  • CAN-Bus and many other components

    PingPong - The IoT Development Board RTOS 3G Version
    PingPong – The IoT Development Board RTOS 3G Version

One amazing feature is, the high-speed cellular module and the numerous interfaces can be controlled over the cloud. So, you don’t have to keep it wired all the time in order to control all those modules.

Technical Information:

Having an area of 85×52 mm², the PingPong is really tiny in size compared to its features. It has a booming 4 MB flash memory which is perfect for IoT purpose. PingPong beats other IoT modules with the wireless technologies it possesses – 2G, 3G, Galileo E1, GLONASS, and GPS. Supported bands(MHz) for cellular communication are 1800, 1900, 2100, 850, and 900. It communicates with other MCUs over I²C protocol which is widely used by almost all types of MCUs.

The greatest strength of PingPong is its expandability. The developer can overcome all the limitations of PingPong by adding a variety of expansion cards to the PingPong platform. Some examples of expansion cards are, wireless local area network (WLAN), Bluetooth, input/output (I/0), Iridium satellite communications, ISM/RF, SigFox, near-field communication (NFC), radio-frequency identification (RFID), and camera connectivity.

Applications:

  • Send and receive data: Pingpong offers different possibilities for sending and receiving data. Whether it’s wired over Ethernet or on the go with built-in GSM/GPRS module, PingPong does its job of exchanging data continuously.
  • Remote control: The PingPong can be used to control processes remotely via its outputs. Using the digital output with a relay can either enable or disable the power supply of an application.
  • Positioning: With its built-in GNSS and GPS module, the PingPong can also be used to determine position, motion, speed and acceleration.
  • Telemetry: The PingPong can be connected to a wide variety of sensors to process digital and analog measurements. Thus, for example, temperature values collected from a temperature sensor can be transferred via analog input to the PingPong.

And there are much more applications. From hobby projects to industrial development, sensor data collection to the smart home project – anywhere you can use this versatile board.

PingPong supports numerous expansion cards
PingPong supports numerous expansion cards

Important Links:

To learn more on this amazing IoT board, watch these three videos:


Conclusion:

The PingPong is a surprisingly powerful IoT module. It’s a developer’s dream. Having all these features in one package is truly outstanding. The feature of adding expansion cards makes it even stronger.

You can purchase your own PingPong from roundsolutions.com at €199.00. It may seem to be a bit overpriced, but it’s really not. Just consider the features you are getting in a single package and you’ll realize it.

Build Your Next IoT Device With GOBLIN 2

Designed for industry, makers, and visionary students, Verse Technology presents GOBLIN 2, its new card with the best of Arduino technology.

GOBLIN 2 is an IoT development board that unlocks the potential of the Internet of Things. It has been built based on the high-performance 16MHz ATmega328P microcontroller with a built-in SIM5320A connectivity module, and high accuracy 16-channel GPS.

The board contains 10 digital I/O ports half of them work as PWM, and 6 analog pins. It also integrates connectivity for each RS-485 protocol and voltage outputs of 24V, 5V and 3.3V that are ideal for industrial sensors or sensors with analog/digital signal.

The SIM5320A incorporates a dual-band HSDPA/WCDMA and Quad-Band GSM/GPRS/EDGE which gives GOBLIN 2 the connectivity with web servers through any cellular web. It also includes inlets/outlets to connect peripherals like keyboards, microphones, speakers, and thus exploit better the cellular network.

GOBLIN 2 Introduction video:

Technical specifications of GOBLIN 2:

  • Dimensions: 65.5mm x 82.2mm
  • Microcontroller: ATmega328P
  • CPU Speed: 16 MHz
  • Memory: 1KB EEPROM, 32KB Flash, 2KB SRAM
  • External Power Input: Micro USB 2.0 5V, Solar Panel 5V up to 200mA, 3.7V battery charger.
  • Power Output: 3.3V 300mA, 5V 3A, 24V 500mA.
  • Ports:
    • 6 ADC input – 10 bits resolution
    • 10 digital in/out – 5 PWM
    • 1 Micro USB Up to 115.2k baud
  • Connectivity:
    • SIM5320A with Header USB 2.0 interface
    • Header to Keypad, microphone and speaker for SIM I/O
    • High accuracy 16 channel GPS
    • RS-485 protocol 10Mbps Up to 256 nodes on the bus

GOBLIN 2 is powered by Li-Po battery of 3.7V to 4.2V, which can be charged through a solar cell or a Micro-USB thanks to its built-in battery management module. With an integrated voltage converter, GOBLIN can offer three output voltages; 24V to industrial sensors, 5v to charges like servomotors or related sensors with that kind of supply voltage and 3.3v for communication devices such a RF, Wi-Fi, sensors and others.

The board’s microcontroller can be programmed with Arduino IDE or Atmel Studio via micro USB, which also can be used for direct communication with the SIM5320A from the PC for a SIMCOM “AT+” command interchange.

Some of GOBLIN 2 applications:
  • Monitoring of industrial sensors with an RS-485 protocol.
  • Telemetry.
  • Vehicle monitoring.
  • GPS systems.
  • Weather monitoring.
  • Alarm system.
  • Automation applications.
  • SMS Applications, calls.
  • Monitoring of medic variables.
  • Remotes controls.

GOBLIN 2 is now available for $134 on Verse Technology store. Their github repository and documentation page contains some example codes and projects. This video shows the GOBLIN 2 in action:

NTP synchronized clock

The Network Time Protocol (NTP) is the most commonly used internet time protocol for synchronizing locally running clocks to a more accurate reference clock server. In United States, the official time is provided by the National Institute of Standards and Technology (NIST). The NIST servers listen to a NTP request, and respond by sending a 64-bit UDP/IP data packet containing the time in UTC seconds since January 1, 1900, with a very high time resolution of 200 picoseconds. Raj from Embedded Lab illustrates in his new tutorial how to make an ESP8266 based internet clock that is synchronized with the NIST time server for accurate timekeeping. An ILI9341-driven colorful TFT LCD is used to display time in both analog clock dial and digital formats. Raj used EasyESP-1 board for this tutorial and developed the firmware for his internet clock using Arduino IDE.

ESP8266-based internet clock

Virtualette V1, A Tiny Powerful Microcomputer

Designed by SRKH Designs, Virtualette V1 is a small dual stack microcomputer that can run Android and Linux operating systems, for network-wide IoT and mobile edge computing solutions and electronics DIY projects.

Virtualette V1 is designed based on the dual-core Cortex-A7 Allwinner A20 SoC, with 1GB DDR3L base memory, 8GB onboard NAND flash, and a 32GB microSD card. It also includes a real time clock, onboard battery and wakeup function, and 80 IO pins.

The microcomputer is consist of dual connected PCBs with 7.6cm x 3.7cm x 1.8cm size including mounting feet. It has an Ethernet jack, a USB port to connect mouse or keyboard, microSD card slot, SATA port, and mini USB ports.

Virtualette V1 is a low energy device with a typical 2.4W of energy draw with three power options; 9-48V PoE (Powered over Ethernet), 5V USB OTG, and a lithium battery.

You can run any of linux-based operating system on the V1, in addition to the optimized linux distribution that will be shipped with it. Users can change the OS by swapping over the micro SD card and they have the option of booting from an external microSD card or from the onboard NAND 8GB flash.

Additional storage can be added by inserting a USB2 drive or external hard drive (SATA compatible). V1 can be optionally booted by USB or a dedicated SPI ROM port.

Virtualette V1 Playing DVD via SATA

Examples of V1’s potential capabilities are:

  • As an individual desktop device or controller for a drone or robot.
  • As a liquid-cooled computer inside a 40mm PVC pipe.
  • As M2M nodes in a distributed intelligent security system.
  • Deployed as a peer-to-peer, machine-to-machine network in applications such as display information systems in airports or train stations.

With the launch of their Kickstarter campaign, SRKH Designs aims to raise funding of US$22.5k, offering backers Virtualette V1 devices from the first production run as their reward.

Post campaign, a roadmap of hardware products for the Virtualette range is planned. This includes future quad-core and octa-core versions, an add-on FPGA-based development board, a desktop platform, popular video adaptor interfaces and an ‘All in One’ peripheral board designed to embed V1 inside a slimline display case.

Radino WiFi

Radino WiFi: Arduino With ESP8266EX

The Internet of Things or IoT technology is booming nowadays. Almost all makers are getting interested towards this field of endless possibilities. The Arduino and the ESP8266 are strong bases of this awesome technology. But, what will happen if we merge an Arduino with an ESP8266EX under the same package? Well, the answer is “Radino WiFi”.

Radino WiFi : The Arduino compatible WiFi Module
Radino WiFi: The Arduino compatible WiFi Module

The In-Circuit Radino WiFi combines an ATmega32U4 with the popular ESP8266EX WiFi SoC to the small
Radino package. The ATmega32U4  MCU is also used in Arduino Micro. In Radino, the MCU is preprogrammed with Arduino bootloader. Hence, you can use Arduino IDE for uploading codes to this Arduino-compatible device. In-Circuit stated on their website:

It′s part of the radino-series, which provides full Arduino-compatible wireless communication devices in a small form factor, all pins are compatible with each other.

Features:

  • Arduino-compatible
  • Fully integrated WiFi Chip ESP8266EX by Espressif
  • 802.11 b/g/n protocol
  • Wi-Fi Direct (P2P), soft-AP
  • Integrated TCP/IP protocol stack
  • Integrated TR switch, balun, LNA, power amplifier and matching network
  • +19.5dBm output power in 802.11b mode
  • ESP8266 Power down leakage current is < 10uA
  • Wakes up and transmits packets in < 2ms
  • ESP8266 Standby power consumption is < 1.0mW
  • 15 GPIOS (7 PWM, 5 Analog IN)
  • I²C, SPI, UART
  • USB (HID Keyboard & Mouse, virtual UART)
  • High-Performance, Low-Power Microcontroller ATmega32U4

Technical Details:

Radino WiFi consists of two chips. An ATMega32U4 and an ESP8266EX. The ATmega32U4 is used as I/O machine for the ESP8266EX. It performs all the required tasks to control I/Os. In the other hand, ESP8266EX is the main WiFi chip and all WiFi services run only on the ESP.

The Radino comes preprogrammed with an ESP based web server. The default settings are given below:

  • Access point: RADINO-WIFI
  • Password: 12345678
  • TCP/UDP service for UART-Bridge/WiFi
  • Default IP: 192.168.2.1

The user can change these default settings anytime.

Download the Radino library for Arduino IDE 1.6 from here. Add this library to Arduino IDE and select Radino board from board manager.

This video explains how to use this amazing module.

Radino Pinout:

Radino WiFi Module Pinout Diagram
Radino WiFi Module Pinout Diagram

Radino has 15 GPIO pins. Among them, 5 pins can handle PWM signal and 5 pins can take analog signal as input. Radino is powered by a 3.6V power source. Exceeding that value will damage the device.

Important Links:

Another video on this topic:

You can purchase Radino WiFi from shop.in-circuit.de. It costs only 19.90€.

Expand Your ESP8266 Analog Inputs With $10

ESP8266 is a very powerful module for building an IoT or WiFi-based project. But since it has only one analog input, you may need to use another microcontroller or circuit to connect multiple sensors and data sources with your ESP8266.

Allaboutee created the second version of their analog expander board. Simply it is a board that lets you add eight analog inputs to your ESP8266 via I2C, the first version had only four inputs.

The expander is a 19x14mm board that is powered by a range of 2.7V to 3.6V, features 8 10-bit resolution analog inputs for sensors with an output voltage lower than 3.3V. Allaboutee developed some open source, easy to use libraries and examples:

Expander pinout:

  • VDD – 2.7V to 3.6V (If using with ESP8266 you’ll have to use 3.3V for this pin).
  • GND – Ground
  • SCL – I2C clock (connect this to GPIO0 of the ESP8266)
  • SDA – I2C data (connect this to GPIO2 of the ESP8266)
  • A0 -> A7 – Analog inputs (0v to 3.3V)

You can not use two or more boards to have more than 8 analog inputs because the chip’s I2C is factory fixed. If you do not connect a pin to anything, it will be “floating”, that means it’s value is not defined so it can be anything.

This video shows the expander board in action:

ESP8266 expander is available for $10 at tindie, it may be a bit expensive but with the cost of ESP8266, it is a very cheap alternative of the $100 Arduino Wifi shield.

“If you were to desire an Arduino based and thus easy to program, WiFi enabled microcontroller, then you could purchase an Arduino WiFi shield for $100+, OR you could instead get an esp8266 w/ breakout board for $6, A 3.3v voltage regulator for $1, the analog input expander $10 and an FTDI to USB 3.3v programmer $3.” – A review by Erol

SensorTile, An Accurate Development Kit For Biometric Wearables

Valencell, a biometric wearable sensor technology company, in partnership with STMicroelectronics, an electronics and semiconductor manufacturer, announced a new highly accurate and scalable development kit for biometric wearables. The kit combines ST’s compact SensorTile turnkey multi-sensor module with Valencell’s Benchmark biometric sensor system.

The SensorTile is a tiny IoT module (13.5mm x 13.5mm) that features a powerful STM32L4 microcontroller, a Bluetooth Low Energy (BLE) chipset, a wide spectrum of high-accuracy motion and environmental MEMS sensors (accelerometer, gyroscope, magnetometer, pressure, temperature sensor), and a digital MEMS microphone.

The on-board low-power STM32L4 microcontroller makes it work as a sensing and connectivity hub for developing firmware and shipping in products such as wearables, gaming accessories, and smart-home or IoT devices.

Key Features:

  • FCC (ID: S9NSTILE01) and IC (IC: 8976C-STILE01) certified
  • Included in the development kit package:
    • SensorTile module
    • SensorTile expansion Cradle board equipped with audio DAC, USB port, STM32 Nucleo, Arduino UNO R3 and SWD connector
    • SensorTile Cradle with battery charger, humidity and temperature sensor, SD memory card slot, USB port and breakaway SWD connector
    • 100 mAh Li-Ion battery
    • Plastic box for housing the SensorTile cradle and the battery
    • SWD programming cable
  • Software libraries and tools
    • STSW-STLKT01: SensorTile firmware package that supports sensors raw data streaming via USB, data logging on SDCard, audio acquisition and audio streaming. It includes low level drivers for all the on-board devices
    • BLUEMICROSYSTEM1 and BLUEMICROSYSTEM2: STM32Cube expansion software package, supporting different algorithms tailored to the on-board sensors
    • FP-SNS-ALLMEMS1 and FP-SNS-MOTENV1: STM32 ODE functional packs
    • ST BlueMS: iOS and Android demo Apps
    • BlueST-SDK: iOS and Android Software Development Kit
    • Compatible with STM32 ecosystem through STM32Cube support

“Valencell’s Benchmark solution leverages the high accuracy of ST’s MEMS sensor technology along with SensorTile’s miniature form factor, flexibility, and STM32 Open Development Environment-based ecosystem,” said Tony Keirouz, Vice President Marketing and Applications, Microcontrollers, Security, and Internet of Things, STMicroelectronics. “Combined, SensorTile and Benchmark enable wearable makers to quickly and easily develop the perfect product for any application that integrates highly accurate biometrics.”

Integrating ST’s SensorTile development kit with Valencell’s Benchmark sensor technology simplifies the prototyping, evaluation, and development of innovative wearable and IoT solutions. That’s done by delivering a complete Valencell PerformTek technology package, ready for immediate integration and delivery into wearable devices. The collaboration with ST expands on previous work that incorporated the company’s STM32 MCUs and sensors into Valencell’s Benchmark sensor system.

“Working with ST has allowed us to bring together the best of all sensors required to support the most advanced wearable use cases through our groundbreaking Benchmark sensor system,” said Dr. Steven LeBoeuf, president and co-founder of Valencell.

The kit is in volume production and is available for about $80. You can order it and get more information and technical details through the official page.

Source: ElectronicSpecifier

EasyESP-1: A beginner’s prototyping board for ESP8266

ESP8266 has made it possible for makers to develop IoT applications in much simpler and more inexpensive ways. EasyESP-1 is a new ESP8266 prototyping board, specially designed for beginners by Raj from Embedded Lab. With an onboard USB-to-Serial converter pre-installed, EasyESP-1 does not require any additional hardware to download your application firmware to the ESP8266 chip. The ESP module used in this development board is ESP-12E. All the I/O pins are broken out to 0.1” female headers for easy access, as well as to standard Grove connectors for connecting Grove sensors and other compatible modules. The 180-point breadboard further facilitates experimenting and testing of external circuits. You can buy EasyESP-1 from their Tindie Store.

EasyESP-1 makes ESP8266 prototyping easy

Features

  • Easy access to all GPIO pin through female headers and Grove connectors
  • On-board USB-UART chip for easy programming and debugging
  • 180-point breadboard for experimenting with test circuits
  • On-board 3.3V (800 mA) regulated power supply
  • Two tact switches for user inputs, and one output LED
  • Slide switch to enable/disable auto Wake Up feature during Sleep mode

For more details about EasyESP-1, visit Raj’s Page.

Wireless sensor module speeds IoT product development

Using standard ICs and open software ecosystem from STMicroelectronics, Samtec has introduced its first Samtec nMode wireless sensor module. The production-ready solution allows engineers to remotely sense and measure inertial, environmental and acoustical parameters. By Graham Prophet @ edn-europe.com

The 13.5 x 13.5 mm nMode module contains a MEMS accelerometer, gyroscope, magnetometer, pressure sensor, and a MEMS microphone — all from STMicroelectronics. The small size suits the nMode to use as a standalone node for products such as wearables, gaming accessories, and smart-home or Internet-of-Things (IoT) devices.

Wireless sensor module speeds IoT product development – [Link]

SmartPID, The New Open Platform For Your Projects

ARZAMAN Smart Engineering is a small innovative Italian startup company that develops smart hi-tech solutions, by working on specific ideas for a specific hobbyist market. ARZMAN has just launched a new product: SmartPID!
SmartPID Controller is a hi-tech product that facilitates temperature and process control. It has the ability to control any thermos-regulated process, heating or cooling, and also it can control any application in your home. In addition, it is compatible with Arduino, so you have the chance now to move your applications to the next step!

It is provided with two apps: smart thermostat app and the smart brewing app. The smart thermostat app can be used for any thermal regulated process, while the brewing app is is a vertical application that is dedicated to brewing process automation from mashing to boiling.

SmartPID is IoT-ready,cloud-connected, and runs PID algorithm. In addition, it has the  following features:

SmartPID is powered by SAMD21 32-bit ARM® Cortex®-M0+ by Atmel and it has 8 Mb EEPROM and ESP8266 WiFi module with many other specifications and advantages as shown in the picture.

It is totally compatible with Arduino since it
has SAMD21 processor, a dedicated USB bootloader and board definition, can be programmed with Arduino IDE and can use the libraries available.

SmartPID comes with a mobile app to control and monitor the project installed. Check this video to see the app in action.

“SmartPID is not a simple controller or thermostat, is more an “open platform” powerful and flexible where the resources and I/O can be used for different applications, different environments and integration. My idea is to develop an ecosystem of “vertical” applications on top of a common set of features” -Davide Arzarello, founder of ARZAMAN Smart Engineering.

SmartPID is now live in a crowdfunding campaign on Indiegogo and it has only one week to go. You can pre-order it now preloaded with the thermostat app for around €89. Check SmartPID website and the campaign page to know more details and specifications. You can see SmartPID in action in this promo video: