IoT category

RAK8211-NB iTracker – An All Weather IoT Board designed for Asset Tracking with Bluetooth 5.0

In the last few years, we have seen a lot of love poured towards the hardware ecosystem especially hardware related to the Internet of Things applications (hardly would you find any board that doesn’t have one or two IoT offerings). Some boards give basic IoT functionality like providing you with a basic IoT connectivity interface with no extra add-ons while some boards goes the extra mile by providing more, RAK8211-NB iTracker is one of those boards.

RAK8211-NB iTracker

Rak Wireless, the Chinese based hardware company has recently launched a new IoT focused board called the RAK8211-NB iTracker based on the Quectel BC95-G NB-IoT Module, Nordic Semi nRF52832 Bluetooth 5 chip, and Quectel L70-R GNSS module. The Quectel BC95-G is a high-performance NB-IoT module which supports multiple frequency bands of B1/B3/B8/B5/B20/B28* with extremely low power consumption. The ultra-compact 23.6mm × 19.9mm × 2.2mm profile makes it a perfect choice for size-sensitive applications like the RAK8211-NB iTracker. The Quectel provides a flexible and scalable platform for migrating from GSM/GPRS to NB-IoT networks.

The RAK8211-NB is a module geared towards asset tracking and management due to its arrays of features, and it’s one of those board that supports the new Bluetooth 5.0. The board includes a vast array of connectivity options (NB-IoT, BLE 5.0 and GPS). The asset tracker module comes with five different sensors to monitor motion and environmental data, and can optionally be powered directly by a solar panel. It comes with accompanying sensors like an accelerometer, a light sensor and a barometric sensor. At the heart of the RAK8211-NB is the Nordic NRF52832 SoC. The nRF52832 SoC is built around a 32-bit ARM® Cortex™-M4F CPU with 512kB + 64kB RAM. The embedded 2.4GHz transceiver supports Bluetooth Low Energy, ANT, and proprietary 2.4 GHz protocol stack.

The RAK8211-NB module is Arduino friendly and can be programmed using the IDE. The board also provides SWD interface for programming the NRF52832 core. The combination of BLE and NB-IoT offers flexible low power consumption development along with a myriad of application option ranging from telemetry to live tracking and environment sensing. The RAK8211-NB iTracker provides applications in the following areas:

  • Vehicle location/fleet transportation management.
  • Safety monitoring of old/young children.
  • Animal protection and animal husbandry management.
  • Asset tracking and management.
  • Prototyping for NB-IoT Applications.

The below are some of the specifications of the module:

  • Connectivity
    • NB-IoT via Quectel BC95-G (Global) wireless communication module + SIM card socket
    • Bluetooth 5 via Nordic Semi nRF52832 Arm Cortex-M4F micro-controller (Arduino compatible)
    • GPS/GLONASS via Quectel L70 GNSS module
  • Sensors
    • LIS3DH ultra-low-power, high-performance 3-axes “nano” accelerometer
    • LIS2MDL ultra-low-power, high-performance 3-axis digital magnetic sensor.
    • Tilt sensor
    • BME280 pressure, humidity and temperature sensor
    • The OPT3001 intensity of light sensor
  • Expansion – 3x headers with SWD, 2x sensor out + tilt out (also usable as GPIO and analog inputs), 3.3V, GND, and reset
  • Power Supply – 3.5V to 18V via solar panel (P2) or battery (P3)
  • Dimensions – 43mm x 38mm x 18mm
  • Temperature Range – 40°C to +85°CBLE Features

The company provides instructions to use the module with the Arduino IDE, Espruino (JavaScript) and Arm Keil tools. The RAK8211-NB iTracker kit is available and sells for $98.40 + shipping on Aliexpress. Rak Wireless also offers another variant of RAK8211 with RAK8211-G based on the most of the same features, except GPRS is used instead of NB-IoT. It is sold for $87.40 + shipping.

BlkBox BB-E01P – The World’s Smallest ESP8285-Based WiFi Module

Back in March 2016, Espressif Announced the ESP8285 Wi-Fi Chip, a supposed killer of the favorite ESP8266 chip. The new chip is an ESP8266, but with the flash memory onboard –  1MB flash memory. Espressif’s ESP8285 delivers highly integrated Wi-Fi SoC solution to meet users’ constant demands for efficient power usage, compact design and reliable performance in the Internet of Things industry. With the complete and self-contained Wi-Fi networking capabilities, ESP8285 can perform either as a standalone application or as the slave to a host MCU. When ESP8285 hosts the application, it promptly boots up from the flash. The Chip is also ultra-small as compared to the ESP8266 making it suitable for applications like in wearables.

Taiwan based Blkbox may have designed the world’s smallest WiFi IoT module with their Espressif Systems ESP8285 based BB-E01P module which is pin-compatible with the ESP-01 module, and measuring just 10×14 mm. Several ESP8285 modules have been released, but the Blkbox version is probably the smallest ever. Itead Studio’s PSF-A85, an ESP8285 Wireless Module measures just 14mm*135mm, and even the Electrodragon ESP8285 WiFi module measures 15.5mm x 17.8mm. With this, the Blkbox module might be the smallest we currently have. The BB-E01P is the equivalent of the Blkbox predecessor BB-E01 with reduced dimensions.

BB-E01P ESP8285 Pinout

The following are the specification of the Blkbox BB-E01P ESP8285 WiFi module:

  • WiFi SoC – Espressif ESP8285 WiFi SoC with 1MB internal flash
  • Connectivity – 802.11 b/g/n WiFi with chip antenna
  • Expansion – 8-pin (2.54mm pitch) with Tx/Rx, CP, RS, GPIO0, GPIO2, 3V, GND (Same layout as ESP-01)
  • Interface – UART
  • Misc – Jumper supports Deep Sleep Mode (AT+GSLP)
  • Firmware Version: AT v1.6 / SDK v2.2
  • Power Supply – 3V -3.6V
  • Dimensions – 10 x 14 mm
  • Pin Pitch – 2.54mm

The Blkbox board is preloaded with the firmware version AT v1.5/SDK v2.2. Just like every other Blkbox boards, the module can be purchased on Tindie for $6.80 + shipping.

HioTron IoT Kit – A Modular and Enterprise IoT Development Kit

HioTron IoT Kit is a modular and enterprise IoT kit that is entirely pre-programmed prototyping kit for quickly building and testing IoT concepts. All modules are plug-n-play, allowing for flexible prototyping, customization & production. This set of kit is made by the Indian based company HioTron, which specializes in IoT solutions development. This Kit includes Hardware, IoT Platform & User App/Dashboard needed to build quickly any IoT application right from Scratch to Production.

Hiotron Development Kit

One of the challenges that come with embarking on IoT project is that of the platform, software, wireless standard, API, and hardware selection. We have numerous IoT enabled hardware in the market, with each having their own software stack and also several IoT platforms available to pick from. The process of going through these selection pools, valuable and productivity time could be lost and still not arrive at something that genuinely works or is efficient. Hiotron’s goal is to solve this by providing a complete package that can be used from PoC (Proof Of Concept) to Production. HioTron complete IoT solution which includes not only the hardware building blocks (Nodes & Gateway) needed to quickly prototype a wireless IoT system from scratch but most importantly hIOTron enterprise IoT™ Platform is integrated with custom mobile application & GUI dashboard that enable user to get up and run PoC of any idea as easily and quickly as possible.

The IoT Kit is ideal for makers, enthuthat siast, startups and even organization that wants to embark on IoT projects in the areas of smart cities, agriculture, industrial & smart factories, energy, healthcare, logistics, and several others. The kit is modular which means you can easily stack in add-ons on top of existing ones or add another device to the network infrastructure. The kit includes the following:

  • Hi-Node
  • Hi-Gate
  • hIOTron IoT Platform
  • Dashboard and Mobile App

Hi-Node

Hi-Node is a battery (2700 mAh Li-ion) or USB [Optional] powered wireless node which comes with 4 output channels to control real-world devices using 4 relays (Output 5A 230VAC) with 4 connectors and 4 universal (Analog/Digital) input channels to communicate with real-world sensors and transmit this information to IoT gateway using wireless (Zig-bee & BLE4.0) protocols.

Hi-Node

Hi-Node provides standard interface that offers not only remote monitoring but also control capability for managing many types of devices and it also offers advanced Edge Analytics & Local storage. The Hi-Node ZigBee is based on the Digikey Wired XBee module which boasts a range of about 80 – 100 meters line of sight and about 40 meters indoor. The Hi-Node is based around the ATmega328P with 2KB of SRAM, 32KB of Flash memory, and 1KB of EEPROM.

Hi-Gate

Hi-Gate is the brain of this kit which is fully Modular & Enterprise IoT gateway and which doesn’t only translate the protocol [RF/ NON-RF –To– REST/MQTT] but has TI CC3200 at its heart. The Gateway device comes with Zig-Bee and BLE4.0 to support its local network infrastructure with the Hi-Nodes and an outbound connectivity for connecting to the outside world using Wi-Fi 802.11 B/G/N Radio, Ethernet, and Cellular connectivity (2G, 3G, and 4G).

Hi-Gate

The Gateway device supports dual mode of operation – As a Node or Gateway. The Hi-Gate can support up to 25 wireless Hi-Nodes and offers an auto-reconnect for Wi-Fi and GSM network.

The following are the specification of the Hi-Gate:

Hardware System
  • Controller: ARM Cortex-M4 Core at 80 MHz
  • Flash: 1MB Serial Flash Memory
  • RAM: 256KB
  • EEPROM: 512KB External
Interface
  • Power input: 9-12V DC
  • 2-GPIO Port Pins
  • 2-Analog Port Pins
  • RTC
WiFi Specs
  • IEEE 802.11 b/g/n
  • Frequency Band: 2.4 ~ 2.462 GHz

HioTron IoT Platform

The hIOTron IoT Platform supports five major D’s such as Device Management, Device Connectivity, Data Storage, Data Analytics and Dashboard/Application enabled for the management of an IoT project life cycle. The Hi-Gate stream data to the hIOTron platform where all the analytics, storage, automation will be carried out.

The Hiotron IOT Platform

Dashboard & Mobile App

You can monitor & control your project application through the Dashboard & Mobile Application provide by HioTron and do unlimited customization from anywhere, anytime.

The Modular & Enterprise IoT development kit comes in 3 versions are Standard, Advance & Customized which can be selected based on applications requirement. The kit pricing is currently not disclosed. More information about the Kit can be found here and for more details on about getting started with the kit can be found here.

Phytec Develops Three PhyCore Modules – i.MX8, i.MX8M, and iMX8X, Driven By Linux

Phytec has updated their product pages for three new PhyCore modules, all of which support Linux. The three modules, which employ three different flavors of i.MX8 SOC is phyCORE-i.MX 8Xi.MX 8M, and i.MX 8 SBCs. The PhyCore COMs are based on NXP’s Cortex-A53 based i.MX8M, its -A53 and -A72 equipped i.MX8 Quad, and its -A35 based i.MX8X.

phyCore-i.MX 8X

phyCORE-i.MX 8X module
phyCORE-i.MX 8X module

The i.MX8X SoC found on the phyCORE-i.MX 8X module. This board focuses on industrial IoT applications. i.MX8X includes up to 4x cores that comply with Arm’s Cortex-A35.

The i.MX8X SoC is further equipped with a single Cortex-M4 microcontroller, a Tensilica HiFi 4 DSP, and a multi-format VPU that supports up to 4K playback and HD encoding.

There’s no onboard wireless support, but support for dual GbE controllers (1x onboard, 1x RGMII) are available. There are MIPI-CSI and parallel camera interfaces, as well as ESAI based audio.

phyCore-i.MX 8M

phyCORE-i.MX 8M module
phyCORE-i.MX 8M module

The phyCORE-i.MX 8M supports the NXP i.MX8M Quad and QuadLite, both with 4x Cortex-A53 cores, as well as the dual-core Dual. All are clocked to 1.5GHz. They all have 266MHz Cortex-M4F cores and Vivante GC7000Lite GPUs, but only the Quad and Dual models support 4Kp60, H.265, and VP9 video capabilities.

In addition to the i.MX8M SoC, which offers “128 KB + 32 KB” RAM, the module ships with the same memory features as the phyCore-i.MX 8X except that it lacks the SPI flash. Once again, you get 512MB to 4GB of LPDDR4 RAM and either 128MB to 1GB NAND flash or 4GB to 128GB eMMC. This 3.3V module supports an RTC, watchdog, and tamper protection.

phyCore-i.MX 8

phyCORE-i.MX 8 module
phyCORE-i.MX 8 module

The phyCORE-i.MX 8, is ideal for image and speech recognition. It is the third module to support NXP’s top-of-the-line, 64-bit i.MX8 series. The module supports all three flavors of i.MX8 while the other two COMs we’ve seen have been limited to the high-end QuadMax: Toradex’s Apalis iMX8 and iWave’s iW-RainboW-G27M.

i.MX8 QuadMax features dual high-end Cortex-A72 cores clocked at 1.6GHz plus four Cortex-A53 cores. The i.MX8 QuadPlus design is the same, but with only one Cortex-A72 core, and the quad has no -A72 cores.

The 73 x 45mm phyCORE-i.MX 8 supports up to 8GB LPDDR4 RAM. Like the phyCORE-i.MX 8X, the module provides 64MB to 256MB of Micron Octal SPI/DualSPI flash. There’s no NAND option, but you get 4GB to 128GB eMMC.

More information may be found in Phytec’s phyCORE-i.MX 8XphyCORE-i.MX 8M, and phyCORE-i.MX 8 product pages as well as the phyBoard-Polaris SBC product page.

Seeed Launches Engleye-530s, A Samsung ARTIK Powered Board in a Raspberry Footprint

The Samsung ARTIK™ is an integrated IoT platform consisting of enterprise-grade modules, cloud services, and end-to-end security for the design and development of robust IoT solutions. ARTIK empowers developers with easy-to-use APIs and SDKs, extensive documentation and rich tools. It hides the complexity inherent in IoT behind open, enterprise-grade APIs. Seeed Studio, a household hardware company, has launched the Eagleye 530s.

Eagleye 530s

The Eagleye 530s released by Seeed is a maker board in a Raspberry Pi form factor and powered by the Samsung Artik-IoT Platform. The Eagleye incorporates the Samsung ARTIK 530s, a 1GB system-on-module (SoM). Samsung Artik 530/530s is a module meant for the Internet of Things; it’s based on a quad-core Arm Cortex A9 processor for local data processing and multimedia engine to handle audio and video processing. The module provides support for Ethernet, dual band WiFi, Bluetooth 4.2, and 802.15.4/Zigbee and Thread connectivity. Eagleye 530s supports full HDMI, MIPI camera interface, video, and audio media.

As compared to the original Raspberry Pi 3, The Eagleye has an ARM Cortex A9 installed with four cores clocking at 1.2 GHz. They both have a 1G of RAM, while the Pi 3 requires a micro SD card as it’s storage medium, the Eagleye doesn’t, it comes with a 4GB of eMMC flash memory, so micro SD card is optional. It offers much more than it’s competing product, it supports the wireless protocol Zigbee, making it suitable for IoT gateway applications.

The following are the Eagleye 530s board specifications:

  • Processor– Quad Core Arm Cortex A9 processor @ 1.2GHz
  • System Memory – 1GB DDR3
  • Storage – 4GB eMMC flash, SD card slot
  • Connectivity
    • 802.11a/b/g/n dual band SISO (2.4G/5G)
    •  Bluetooth 4.2(BLE+Classic)
    • Zigbee/Thread 802.15.4
    • Gigabit Ethernet port (RJ45)
  • Video Output – HDMI port
  • Audio – 1x Headphone Jack
  • Camera– 1x MIPI CSI header
  • USB – 2x USB 2.0 type A ports, 1x micro USB OTG Type-B
  • Debugging – 1 x Micro USB UART Type-B
  • Expansion – 40-pin GPIO expansion header compatible with Raspberry Pi
  • Power Supply – 5V via DC jack or micro USB UART connector
  • Dimensions – 87mm x 58.5mm x 20mm
  • Weight – 50g

Eagleye 530s will allow Samsung ARTIK developers to build on the powerful Raspberry and Makers ecosystem easily. Eagleye 530s is available for preorder on the Seeed website. Estimated ship date at the end of April 2018.

Neutis

Neutis N5 is a Tiny Quad Core System on a Module

Neutis N5 is a tiny quad-core system on a module from Emlid. Emlid which is known for its Navio2 Autopilot HAT for the Raspberry Pi and some other drone accessories is venturing into the mainstream embedded market with its Neutis N5 computer on a module.

Neutis
Neutis N5

Unlike the other previous boards and products, the Neutis N5 is expected to be a complete spinoff from Emlid mostly due to the fact it is on display on a new Neutis.io website and has no reference on the Emlid website.

In a very tiny (yes, really tiny) package, of about 41 x 29.5mm square with a 4.3mm thickness, the Neutis packed a host of features and power. At the heart of the Neutis is a 64-bit quad-core ARM® Cortex®-A53 processor with a max speed of 1.3GHz and based on the prevalent Allwinner H5. Also comes powered by the Mali 450 MP4 GPU. The Neutis N5 ships with a RAM of 512 MB DDR3, a storage option of 8 GB eMMC, has onboard Wi-Fi (802.11 b/g/n), Bluetooth (Bluetooth 4.0 dual-mode BLE), and an extended temperature range. It has a tamper-resistant dedicated crypto chip for storing cryptographic keys, unique ID, random number generation and many more.

Neutis N5 Pinouts

This module runs modern Linux kernel based on the mainline version. It’s based on the industry-standard Yocto build which provides support to craft a custom Linux distribution or use the pre-configured Debian. Neutis comes with an OTA support, providing an easy and safe way to deliver updates to the devices in the future.

The Neutis comes with a dual 80-pin expansion connector with some I/O ports being multiplexed. It provides interfaces for Audio, Ethernet, HDMI, USB, OTG, SPI, I2C, UART, SDIO, PCM, Line-out/Line-in, and up to 38x GPIO ports. The module runs on 3.3V and core voltage of 1.1-1.3V power and supports a temperature range of -25 to 85°C.

Neutis Development Board

The module comes with FCC and CE certification (pending approval) which will help streamline product certification. Each module has a unique ID which allows convenient management of product patch and includes a time-saving parallel flashing tool. In addition to the module, Emlid is also offering a development kit that provides all the peripheral interfaces on standard ports and 0.1” (2.54 mm) pitch pins for quick prototyping. The kit extends out the following ports of the COM (Computer on a Module):

  • 2 x USB 2.0 Type A
  • 1 x USB 2.0 OTG Micro-B
  • 1 x HDMI
  • 1 x 3.5 mm jack A/V out
  • 1 x MicroSD card slot
  • 1 x RJ45 10/100M Ethernet

The Neutis N5 will be available in April for $49 for single units, with volume discounts available. More information about the Neutis N5 product can is found on the product website.

SODAQ Cellular IoT Development Kit Supports LTE-M, NB-IoT, GNSS and Arduino

SODAQ wants to provide you with the tools to build for the estimated 25 billion Internet of Things by 2020 using their set of Cellular IoT suite called SODAQ SARA Family.

SODAQ SARA Board

Several industriy analysts have claimed that we will have 100 billion IoT devices connected and in circulation by 2050, with the majority of them running on the cellular network mostly due to its large-scale access and ease of deployment. We have already seen IoT deployments on 2G networks but the recent movement of Telecom operators into 4G networks and outfacing their 2G networks are paving ways for new IoT focused technologies to be integrated into the 4G networks. Some of these technologies being developed and deployed are the LTE-M and NB-IoT (Narrow Band IoT). NB-IoT focuses specifically on indoor coverage, low cost, long battery life, and enabling a large number of connected devices. LTE-M will allow Internet of Things devices to connect directly to a 4G network, without a gateway, and on batteries.

To facilitate the development of these exciting technologies, SODAQ which previously launched their NB-IoT shield for Arduino last year is incorporating a range of u-blox SARA modules in its design. The SARA modules are available for NB-IoT, LTE-M but also for 2G and 3G. The following are the u-blox Sara modules used in their IoT cellular suite are:

  • SARA-N211 – NB-IoT, band 8 and 20, for the European and African market.
  • SARA-R410M – Dual mode LTE-M and NB-IoT module for all global bands.
  • SARA-R412M – Triple mode module with LTE-M, NB-IoT, and 2G for all global bands.

The SODAQ board is called the SODAQ SARA. The SARA is an Arduino sized and compatible development board running the Atmel SAM-D21 32 bit microcontroller, along with one of the three u-box modules. In addition to the cellular modules, the SODAQ SARA comes integrated with a u-blox SAM-M8Q GNSS module for precise geolocation. SODAQ claims the GNSS module offers more accurate positioning than conventional GPS because it utilizes the Beidou, Galileo and Glonass satellites. It also comes with an accelerometer/magnetometer chip.

SODAQ SFF Edition

SODAQ is also launching a small form factor (SFF) edition of the same board with a size of about 55 x 25mm and still maintains the same functionality on the bigger board. One significant feature of their boards is that you can power the board directly with a solar panel and further program the boards with the Arduino development tools (Arduino IDE).

SODAQ is currently crowdfunding the boards on Kickstarter. With the three different LTE IoT module and two types of boards, SODAQ is offering a total of 6 different versions of its boards:

  • SARA-N211 NB-IoT (Band 8/20) for 90 Euros
  • SARA-R410M NB-IoT  + LTE Cat M for 100 Euros
  • SARA-R412M NB-IoT + LTE Cat M + 2G fallback for 110 Euros with 1,200 mAh battery
  • SFF N211 for 95 Euros
  • SFF R410M for 105 Euros
  • SFF R412M for 115 Euros with 800 mAh battery

If all goes well in the Kickstarter campaign and SODAQ raises the required €25,000 over the remaining days of its campaign, the Internet of Things Development Suite will start shipping out to backers during March 2018.

Fujitsu Electronics Europe expands its Bluetooth Low Energy portfolio

Adding components from Ambiq Micro and Talent Highland, Fujitsu Electronics Europe has increased its Bluetooth Low Energy portfolio.

The additional products offer customers high integration, low power consumption and flexibility, says Fujitsu Electronics Europe (FEE), and it has produced the ClickBeetle reference platform (pictured) to facilitate the integration of Bluetooth Low Energy products into applications.

Ambiq Micro’s Bluetooth Low Energy components make Bluetooth Low Energy applications more powerful and efficient, claims FEE. The Cortex M4 in Apollo 2 operates at up to 48MHz at only 10-microA/MHz with a deep-sleep current of two micro A. Apollo 1 operates at up to 24MHz at 34-micro A/MHz and has a deep-sleep current of 143-nanoA. Additional components offer the possibility of lowering the deep-sleep current to 22-nanoA. Depending on the requirements, Ambiq Micro offers different bundle packages to combine its Apollo 1 and Apollo 2 microcontrollers or real time clocks with an EM9304 BLE communication chip. Combinations of microcontroller and Bluetooth Low Energy chips are suitable for high-performance applications, while combinations of real time clocks and Bluetooth Low Energy are ideal for cost-sensitive Bluetooth Low Energy beacons. Packages range from BGA, CSP and QFN packages. For very small applications, Ambiq Micro also offers a SoC that combines the Apollo 2 microcontroller and EM9304 BLE in a 4.0 x 4.0mm LGA package with 64 pins.

Customers who would like to integrate Bluetooth Low Energy further can also use a Talent Highland SIP. Components such as a DA14580 with ARM Cortex M0 16 MHz and 42kbyte RAM, 1Mbit SPI flash, crystals, passive components and antenna are bundled in a package measuring only 7.0 x 7.0mm. Thanks to the internal DC/DC converter, the small module also supports three and 1.5V batteries. Depending on the requirements, FEE customers can also create their own package with their own components.

FEE offers its reference platform, ClickBeetle, for application-oriented evaluation and development. It measures just 16 x 26mm and uses a hardware-independent fixed pin layout, making it easy to replace and evaluate Bluetooth Low Energy components, says Fujitsu.

http://www.fujitsu.com/feeu/

Particle Mesh – A Mesh-Enabled IoT Development Kits.

Particle, which has been known for its collection of  IoT focused development boards, and its Internet of Things (IoT) platform (Particle Cloud) has launched a new set of mesh network-enabled IoT development kits called Particle Mesh. Particle Mesh is expected to provide developers more insight into implementing mesh networking technology. They help to collect sensor data, exchange local messages, and share their connection to the cloud.

Particle Mesh Hardware
Particle Mesh Hardware

Particle Mesh features a new family of mesh-ready devices with Wi-Fi, BLE and LTE connectivity and also integrated with the Particle device cloud. Particle mesh consists of three main boards: The Argon, The Boron, and the Xenon. Each of these Particle Mesh boards has at least one form of outside connectivity option (LTE/3G/2G, Wi-Fi or Bluetooth) and an onboard mesh network hardware to facilitate setting up a mesh network for local communications between sensors and other particle mesh boards. All three devices are built around the Nordic nRF52840 MCU + BLE + mesh radio and follow the Adafruit Feather specification making it compatible with most Adafruit FeatherWing hardware accessories. (more…)

Raspberry Pi Plus Cloudio – A Personal IoT Computer with Drag and Drop Programming

Everybody loves the Raspberry (at least the makers does) and has seen several applications from being blasted to space or powering a self-driving car. Raspberry Pi in its natural state is an ideal platform for IoT development mostly due to its connectivity interfaces like the Bluetooth, WiFi, and Ethernet but no significant development has been done in this space apart from some pretty hacks in the last years. GraspIO in partnership with Farnell Element14 distributor has released the GraspIO Cloudio, a Raspberry Pi add-on board with Drag and Drop programming interface for full suite IoT applications development.
GraspIO Cloudio
Cloudio offers the ability to do drag and drop programming instead of the conventional text-based python programming and is supported on iOS and Android devices. So with just an Android phone, iPhone or iPad, you can start programming and controlling your raspberry pi cloudio based applications. Cloudio incorporates Voice Assistant Capabilities, Internet of Things cloud service, sensor monitoring and dashboard, custom notifications, and even provides off the shelf support with the beautiful IFTTT (“If This Then That”) platform. With the integration of IFTTT, you can easily automate some actions like for examples – if an email is received then send sensor reading or feed the fish for a while, another interesting case is – if a weather forecast states there is a likelihood of rain then closes the cage. Cloudio also provides support for upload program to multi-board at once, a perfect option if you will be managing a large number of boards.
Cloudio and Raspberry Pi
At the heart of the Cloudio board is the Atmel 8-bit AVR Atmega32U4 controller and comes in a portable size that makes it compatible with Raspberry Pi 1/2/3/Zero and ZeroW. It comes with a 0.96″ OLED Screen, a display that can be used for displaying real-time sensor values, custom messages and even supports emojis. The board includes proximity, light and temperature sensors and an extra 3 ADX ports for interfacing with external sensors. The board consists of a proximity, light, and temperature sensors plus 3x ADC interfaces for connecting other sensors such as humidity and motion. With the Cloudio, you will never run out of 5V ports as it comes with three digital 5V output ports. Cloudio does not require any external power supply unit and gets its power from the underlying Raspberry Pi. Other features of the board are a mini 5V servo motor port, a buzzer, RGB LED and tactile switch.
According to Steve Carr, the Global Head of Marketing at Premier Farnell and Farnell element14, he says –
“The versatility of GraspIO Cloudio along with its ease of use will make it popular with makers and innovators in a wide range of application environments. Cloudio, when combined with a Raspberry Pi, is a Full Stack IoT platform meaning that you can programme IoT devices simply and quickly with drag and drop programming on a mobile app. The combination of built-in hardware facilities and access to innovative application software will make Cloudio a valuable addition to the range of tools available to developers of projects involving voice, motion, imaging and cloud interaction.”
Cloudio lets you build and create your own voice assistants using the inbuilt speech recognition feature to control it from your smartphone. It comes with an unlimited cloud service from GraspIO to connect, program, monitor, and manage Cloudio from your mobile device. It is preloaded with 50,000 free Cloud Calls and which a daily 100 non-cumulative calls will be credited to the user’s account for life. Cloudio drag and drop based approach to IoT development is undoubtedly going to help limit the barriers in commencing IoT development.

The GraspIO Cloudio Raspberry Pi add-on board is now available to purchase, priced at $40 and is exclusively manufactured and distributed by Premier Farnell UK Limited and other companies that are members of Premier Farnell Group. You can buy the Cloudio Raspberry Pi add-on board here.