LCD/OLED category

IoD-09, An Intelligent WiFi-Enabled Display Module

4D Systems, the manufacturer of intelligent graphics solutions, has announced a new 0.9” smart display module as part of the ‘IoD-09’ series. This series is a set of small full-color TFT display modules that feature the Espressif ESP8266 SoC. It also comes with microSD card slot and is compatible with Arduino IDE.

IoD-09 Display Module

The IoD-09 modules have 6-pin connector at each end, which can connect easily to other applications and boards. It is also suitable for connecting to accessory boards for a range of functionality advancements. The design of these display modules provides a suitable platform for easy integration of displays into a product.

IoD-09 Display Module Specifications:

  • 80 x 160 Resolution, RGB 65K true to life colors, TFT Screen.
  • Built-in WiFi suitable for ‘Internet of things’ applications.
  • 802.11 b/g/n/e/i support
  • Integrated TCP/IP protocol stack
  • WiFi 2.4 GHz, supporting WPA/WPA2 and WEP/TKIP/AES, along with STA/AP/STA+AP/P2P operation modes
  • 4Mbit (512kb) of Flash memory for User Application Code and Data.
  • 128Kb of SRAM of which 80kb is available for the User.
  • 12 pin/pad interface, for all signals, power, communications, and programming.
  • Onboard microSD memory card connector for multimedia storage and data logging purposes.
  • DOS compatible file access (FAT16 or FAT32 format).
  • Display full-color images, animations, and icons.
  • 4.0V to 5.5V range operation (single supply).
  • Module dimensions:
    • (TH version) 31.8 x 16.4 x 11.7mm.
    • (SM version) 37.0 x 16.4 x 5.9mm.
  • Weighing: (TH / SM) ~5 g.
  • RoHS, REACH, and CE compliant.

IoD-09 is also available on two different models, IoD-09TH TFT LCD module with Through Hole interface, and IoD-09SM TFT LCD module with Surface Mount interface. In addition, they can act as master or slave devices, connect to the internet, display a raft information and graphics, along with the capability to communicate to SPI, I2C, and/or 1-wire devices, as well as having general GPIO for digital control/input.

The IoD-09 is compatible with Arduino IDE and the 4D Systems Workshop4 integrated development environment (IDE). Workshop4 provides powerful graphics using the GFXdloIoD09 graphics library specifically for the IoD-09 series through a drag and drop style graphical user interface (GUI).

Workshop Software

Finally, you can buy the IoD-09 display module for about $20. There is also a starter kit for $40 which includes the module, the 4D-UPA programmer, and a 4GB micro-SD card. For more information, you can visit the official page and download the datasheet.

ESP32 NTP OLED clock

@ blog.danman.eu build a OLED display NTP clock and document his process on his blog:

As a first project with my new ESP32 module with OLED display I chose to build OLED clock. I thought I’ll just find some existing code, upload it and it’s done. There are a few such projects for ESP8266 in NodeMCU. So I started with NodeMCU upload.

ESP32 NTP OLED clock – [Link]

4chord MIDI Plays All the Hits

4chord MIDI – the USB MIDI keyboard to play every major hit pop song with four little buttons. by Sven Gregori:

4chord MIDI – the USB MIDI keyboard dedicated to play all the four chord songs, from Adele via Green Day and Red Hot Chilli Peppers to U2 and Weezer. Thanks to MIDI, you can be any instrument – and all of them at once. Yay!

4chord MIDI Plays All the Hits – [Link]

2.9″ ESPaper Lite Kit for $39.90

The 2.9″ ESPaper Lite Kit contains most of the parts you need to display data over wifi:

With the 2.9″ ESPaper module you can display data retrieved over WiFi on an ePaper with little effort. The integrated ESP8266 Wroom-02 module updates the 296×128 B&W ePaper display over the SPI bus. The module also features a charging circuit for LiPo batteries and a JST connector which allows you to run the module for weeks or even months from a battery. How long the module can be run from battery mostly depends on the update frequency and the battery capacity. In tests we could run the module from a 800mAh LiPo battery for several weeks by updating weather information every 20 minutes.

2.9″ ESPaper Lite Kit for $39.90 – [Link]

A Compact Camera Using Raspberry Pi A+ And Adafruit TFT Display

PiJuice at instructables.com designed an interesting compact camera project with raspberry pi. Raspberry Pi A+ is used in this project as it is the cheapest and smallest available Raspberry Pi. The real challenge in this kind of portable Pi projects is powering the Raspberry Pi. This issue is solved using PiJuice—an all in one battery module for the Raspberry Pi.

Required Parts

Required parts to make Raspberry Pi compact camera
Required parts to make Raspberry Pi compact camera

Set Up The Raspberry Pi

Download the latest version of the Raspbian image from the Raspberry Pi Website and burn it on your blank SD card. You can use win32DiskImager or your favorite software to get the job done. Now, you need to install the drivers for the TFT screen by running the DIY installer script, explained on the Adafruit page. Connect the TFT to the Raspberry Pi, attach the PiJuice with a charged battery, and switch it on. Your screen now should display boot up messages.

Connect The Camera

Insert the ribbon cable of your camera module properly ensuring that the blue side of the ribbon is facing away from the HDMI port. Now, go to the terminal and type the following command,

sudo raspi-config

Enable the camera in the menu and then reboot the Pi. The camera should work properly after a successful reboot. To test the camera, enter the following command:

raspistill -o pic.jpg

This will take a snap and save it in the /home/pi directory.

Connect A Push Button

You need a push button to simulate a shutter action. Locate the pin 17 on the GPIO breakout on the top of the TFT screen. Now, solder two wires to the terminals of the push button. You can either solder a right angle header to the pin 17 or you can directly solder one wire from push button to that pin. There is a pad labeled WP on the board. It is actually connected to the ground. Solder another wire from the push button to this pad.

Install And Test The PiCam Software

To install the software, the Raspberry Pi must be connected to the internet. Enter the commands given below to download and install PiCam.

sudo apt-get install git-core
sudo mkdir PiCam
cd /PiCam
git clone git://github.com/pijuice/PiCam.git

Once the software has been downloaded, navigate to the PiCam directory using the command:

cd /picam

You can run it by typing the command:

sudo python picam.py

Now, you can take pictures by simply pressing the push button. Once the button is pressed the picture will be taken. Once the captured image gets loaded, your photograph will be displayed.

Taking photograph with Raspberry Pi compact camera
Taking photograph with Raspberry Pi compact camera

Conclusion

Your Raspberry Pi camera is ready now. If you want to make it even more compact as well as portable, grab the official laser-cut compact camera case from the Kickstarter page by pre-ordering a Maker Kit. You can also build your own simple chassis for housing the camera.

16X2 LCD Shield with LMD18201 Motor Driver

 

LCD is very important part of many DIY and industrial projects. The 16X2 LCD shield has been designed to develop LCD related projects using 28-40 Pin Pic development board or DSpic development board, along with LCD this shield includes LMD18201 DC Motor driver , 2 Trimmer potentiometer and 4 tact switches with jumpers. Jumpers can be used to connect switches to pre decided port pins or remove jumpers and connect switches to any port pin using female to female wire harness, LCD pins and H-Bridge signal inputs are open ended male header connector and can be hooked to any port pin with the help of female to female wire harness. This is a very useful shield to develop timer, measurements, dc motor driver with display, DC motor pump controller, automatic irrigation system and many more projects.

16X2 LCD Shield with LMD18201 Motor Driver – [Link]

Digital UV-meter with OLED Display

@ instructables.com build a nice VU meter using Arduino and an OLED display.

Hello, instructable. Today I will tell you how to make a simple digital VU meter (sound level meter) using Arduino and OLED displays and 2 resistors by yourself (DIY). The device is quite simple, for beginners it will be a rewarding experience.

Digital UV-meter with OLED Display – [Link]

1.3” circular AMOLED modules only 0.6mm thick

by Julien Happich @ eedesignnewseurope.com
andersDX has added a round AMOLED (Active Matrix OLED) display to its range for wearable and instrumentation applications, complementing the circular PMOLED and touchscreen modules that it already offers.

1.3” circular AMOLED modules only 0.6mm thick – [Link]

PowerPlant, A Personal Power Assistant

Imagine you won’t need electricity mains wherever you are outside! PowerPlant by Nuuq is trying to solve this issue by providing its charging mains-alike power bank. PowerPlant is light enough to be convenient to carry, suitable for you backpack and is TSA approved. Also, it is powerful enough to charge loads of device with its 95 Watts power output.

Check this video to know more about PowerPlant:

Power on the go!

Fortunately, PowerPlant includes a universal plug input, a replaceable battery, plus an inner temperature protection. In addition, it will provide you with easy read via its LCD plus fast charging. Furthermore, it has many competitive advantages compared to similar products.

To summarize, below are the full specifications of PowerPlant:

  • Universal plug for 2 & 3 pin plugs (ideal for USA, UK, Europe and Australia)
  • Output 19v/1.58A 5v 2.4A
  • Output: AC 100 – 240v/95W (max)
  • Modified Sine Wave Inverter
  • Replaceable 20100mAh lithium-Ion battery
  • 2 x 2.4A 5v fastcharge USB ports
  • 1 x USB-C
  • 1 x 19 Volt fast charge charging port
  • LCD display with battery charge, temperature, AC, DC and In/Out display
  • IP4 Splash-proof water resistance

PowerPlant is now live on a crowdfunding campaign on Indiegogo. Amazingly, it has achieved 500% of its goal and still has 11 days to go. Finally, PowePlant is available for $150, you can check the campaign for more details.

YouTube Subscriber Counter with Wemos D1 mini

educ8s.tv @ youtube.com uploaded a new tutorial. Nick writes:

Today we are going to build a DIY YouTube subscriber counter with a big LCD display and a 3D printed enclosure

YouTube Subscriber Counter with Wemos D1 mini – [Link]