LCD/OLED category

Sunflower Shield – A 3.5” TFT Touch Screen Display for the Arduino

The Arduino has been a household name in the hardware market for a long while now and many vendors have released various add-on devices usually called Shields to expand the functionality of Arduino. One such add-on device is the newly launched Sunflower shield that will allow users to add a touchscreen display to any Arduino project.

Sunflower shield

A touchscreen is one of the most intuitive and straightforward way of adding user interaction to a project allowing one to remove the need for buttons or some other form of input, and this could be achieved with the Arduino in several ways. Combining a display and a touchscreen to use with an Arduino has been somewhat challenging and tricky, but the Sunflower Shield from creator Paul Bartek and his team will make this easier to achieve.

The Sunflower Shield is a 3.5” capacitive touchscreen that plugs into any standard Arduino board as a normal Arduino shield. The board is a 5V dependent board so it won’t work with any 3.3V based Arduino boards like the 3.3V Arduino Pro. The shield is made up of a 5-point Multi-touch Capacitive Touch Screen making it capable of building gesture control applications. It also supports a portrait and landscape display orientation, a temperature reading through a K-type thermocouple that is shipped with it, provides support for audio output and comes with an 8-ohm speaker.

The Sunflower shield is slightly larger than an Arduino Uno and comes with four mounting holes so you can easily secure the device to an enclosure. It comes with onboard micro SD card slot for application storage.

The following are some of the features of the shield:

  • Premium Multi-domain Vertical Alignment (MVA) TFT Display
  • Easy to use 5-point Multi-touch Capacitive Touch Screen
  • High Brightness White LED Backlight (660 cd/m2)
  • Supports Portrait and Landscape Display Mode
  • Smooth Animations at up to 60 frames/second
  • LED Driver with Pulse Width Modulation (PWM)
  • True 24-bit Color
  • On-board Bridgetek FT813 Graphics Controller IC with Display, Touch and Audio Functionality
  • On-board Pulse Width Modulation (PWM) Audio and Speaker Amplifier
  • Terminal Block with Push-Buttons for Driving an External 8Ω 1W Speaker
  • Micro-SD Socket for Application Storage
  • On-board Maxim MAX31855 K-type Thermocouple Amplifier (-200°C to +700°C with an accuracy of ±2°C)
  • On-board Thermocouple Contacts to Accept a Standard Thermocouple Connector
  • Terminal Block with Push-Buttons for Solid-State Relay (SSR) Control
  • 4 x 3.2mm Mounting Holes Enabling Standard M3 or #6-32 Screws

The shield is currently being crowdfunded on Kickstarter with campaign already exceed their minimum amount requirement and is available for pre-order starting at a $90 pledge level. It is estimated that the board will be available for delivery around September 2018.

The Sunflower Shield will allow makers to add a 3.5″ (QVGA) TFT LCD Display with capacitive touch to their Arduino projects.

Tiny Video Pendant

A Wearable Tiny Video Pendant

The adoption of Wearables has been on the rise especially with the advent of smartwatches and smart glasses, and a growing interest in augmented and the virtual reality space. Most watches are beginning to have some level of smartness and the everyday smartwatch is becoming cheaper. For example, in the last five months, I have own two sets of smartwatches with a different artistic and feel. The Wearable market is rapidly expanding as one of the fastest-growing tech segment. By enhancing productivity and the ability to interact with staff in real time, 79% of businesses see wearables as crucial to ongoing business success.

Wearables are making a name for themselves not just in business environments, but across industries. Savvy adopters in these industries are making waves and paving the way for improved customer experiences, life-saving technology, and productivity. Despite the fact most wearable technology has seen a lot of adoption in the health industry, it doesn’t end there; new wearables are beginning to port directly into the ever-growing fashion industry.

Tiny Video Pendant
Tiny Video Pendant

Makers and product designer have come up with exciting wearable tech that can be used in the fashion line; some famous examples include illuminating a piece of clothes or clothes that gives stop and turn direction for riders. The community of people building electronic wearables is on the rise, and companies like Adafruit are helping to make that habitable for everyoneðeshipu at Hackaday.io has created a tiny video pendant wearable.

The video pendant is a tiny little wearable pendant that displays images and some animations. According to ðeshipu, he created the tiny video pendant as a result of a request from folks to make jewelry with the ST7735S TFT display. ðeshipu went ahead in creating the jewelry pendant using the 0.9-inch screen, one of the smallest TFT displays you will found around.

Inside the pendant are a Microchip SAMD21 processor, a LIR1220 battery as the primary power source (it’s a rechargeable coin cell battery), and some other few components which all make the device to function correctly. It features a USB socket that lets one charge the device and also helps in uploading the images and a switch for turning on or off the device. The whole devices fit perfectly on a 0.9-inch PCB, the same size as the screen making it easy to conceal the other components.

The device currently supports only static images with potential support for animations through a GIF decoder that ðeshipu has plans to write. A future upgrade of the device might add an accelerometer for waking up (and also for some interactive animations). You can follow the project here since development is still active.

Wearable technology is incorporating into our lifestyle in different ways. The technologists don’t leave the jewelry that women use. They turned it into a more important thing than just an ornament.

my-ssd1306 an HTML interface to SSD1306 OLED display

My-SSD1306 allows you to connect any device equipped with RS232 to the I2C SSD1306 displays.

My-ssd1306 board should be put between the RS232 source and the I2C SSD1306 target. Two series of connection pins are provided both have VCC, GND, SDA and SCL but one serie has the VCC and GND swapped to allows a direct connection via a connector because some commercial displays have these two pins inverted.

my-ssd1306 an HTML interface to SSD1306 OLED display – [Link]

Using the 3.2″ HX8357B Color TFT Display with Arduino

3.2″ Color TFT Display

Hi guys, welcome to another Arduino tutorial. Today, I will be showing you how to use the 3.2″color TFT display with Arduino.

The display demand for every project is unique, a project may require just a simple, single color OLED display, while another project may require something bigger, all based on the function the display is to perform. For this reason, as a maker or electronics hobbyist, anyone needs to know how to work with as many displays as possible, that’s why today, we will take a look at how to use the super cheap, 3.2″ color TFT display with Arduino.

Using the 3.2″ HX8357B Color TFT Display with Arduino – [Link]

Heart-rate monitor on a small OLED display with MicroPython

By Martin Fitzpatrick @ martinfitzpatrick.name show us how to build the micro display heart-rate monitor.

Pulse sensors have become popular due to their use in health-monitors like the Fitbit. The sensors used are cheap, simple and pretty reliable at getting a reasonable indication of heart rate in daily use. They work by sensing the change in light absorption or reflection by blood as it pulses through your arteries — a technique jauntily named photoplethysmography (PPG). The rising and falling light signal can be used to identify the pulse, and subsequently calculate heart rate.

Heart-rate monitor on a small OLED display with MicroPython – [Link]

Tiny Graphics Library for ATtiny85 and SH1106 OLED Display

David Johnson-Davies published another great tutorial on how to use the Tiny Graphics Library to plot the outside temperature over 24 hours on a 128×64 OLED display using an ATtiny85.

This small graphics library provides point, line, and character plotting commands for use with an I2C 128×64 OLED display on an ATtiny85.

It supports processors with limited RAM by avoiding the need for a display buffer, and works with I2C OLED displays based on the SH1106 driver chip. These are available for a few dollars from a number of Chinese suppliers.

To demonstrate the graphics library I’ve written a simple application to measure the temperature every 15 minutes over a 24-hour period and display it as a live chart.

Tiny Graphics Library for ATtiny85 – [Link]

RELATED POSTS

Using the ST7735 1.8″ Color TFT Display with Arduino

1.8″ Colored TFT Display

Hi guys, welcome to today’s tutorial. Today, we will look on how to use the 1.8″ ST7735  colored TFT display with Arduino. The past few tutorials have been focused on how to use the Nokia 5110 LCD display extensively but there will be a time when we will need to use a colored display or something bigger with additional features, that’s where the 1.8″ ST7735 TFT display comes in.

The ST7735 TFT display is a 1.8″ display with a resolution of 128×160 pixels and can display a wide range of colors ( full 18-bit color, 262,144 shades!). The display uses the SPI protocol for communication and has its own pixel-addressable frame buffer which means it can be used with all kinds of microcontroller and you only need 4 i/o pins. To complement the display, it also comes with an SD card slot on which colored bitmaps can be loaded and easily displayed on the screen.

Using the ST7735 1.8″ Color TFT Display with Arduino – [Link]

Displaying Customized Graphics on OLED display using Arduino

One thing we all always wish we could do when using any display is to load our own custom graphics, be it a logo, gif etc. In today’s tutorial we will show how to do just that on an OLED display using an Arduino.

OLED (organic light-emitting diode) display is a display based on light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound that emits light in response to an electric current. This layer of organic semiconductor is situated between two electrodes; typically, at least one of these electrodes is transparent. OLEDs are used to create digital displays in devices such as television screens, computer monitors, portable systems such as mobile phones, handheld game consoles, and PDAs. OLED displays do not require a backlight because they emit visible light and can thus, display deep black levels and be thinner and lighter than a liquid crystal display (LCD).

Displaying Customized Graphics on OLED display using Arduino – [Link]

gen4-4DPi Series – Primary Displays for the Raspberry Pi

The gen4-4DPi range are Primary Display’s for the Raspberry Pi* A+, B+, Pi2, Pi3, Pi Zero and Pi Zero W, which display the primary output of the Raspberry Pi, like what is normally sent to the HDMI or Composite output. It features an integrated Resistive Touch panel or Capacitive Touch panel, enabling the gen4-4DPi to function with the Raspberry Pi without the need for a mouse.

Features:

  • Universal Primary Display for the Raspberry Pi
  • Compatible with Raspberry Pi A+, B+, Pi2, Pi3, Pi Zero and Pi Zero W
  • 480×272 Resolution (4.3”)
  • 800×480 Resolution (5.0” & 7.0”)
  • TFT Screen with integrated 4-wire Resistive Touch Panel (T), or Capacitive Touch Panel (CT)
  • Display GUI output / primary output, just like a monitor connected to the Raspberry Pi
  • High Speed 48MHz SPI connection to the Raspberry Pi, featuring SPI compression technology
  • Typical frame rate of 20 Frames per second (FPS) – 4.3”, or 7 Frames per second (5” & 7”), higher if image can be compressed further by the kernel. Lower if no compression is possible
  • Powered directly off the Raspberry Pi, no external power supply is required
  • On board EEPROM for board identification, following the HAT standard

Available in:

  • gen4-4DPi-43T       (4.3” Resistive Touch)
  • gen4-4DPi-50T       (5.0” Resistive Touch)
  • gen4-4DPi-70T       (7.0” Resistive Touch)
  • gen4-4DPi-43CT    (4.3” Capacitive Touch)
  • gen4-4DPi-50CT    (5.0” Capacitive Touch)
  • gen4-4DPi-70CT    (7.0” Capacitive Touch)

website: www.4dsystems.com.au

Arduino E-Paper Display Review ( Waveshare 1.54″)

Our friends at educ8s.tv uploaded a new video. It’s about Waveshare 1.54″ e-paper display:

Dear friends welcome to this Arduino E-Paper display tutorial. In this video, we are going use this small e-paper display with Arduino for the first time and talk about its advantages and disadvantages.

Arduino E-Paper Display Review ( Waveshare 1.54″) – [Link]