Motor category

50V – 10A Bidirectional DC Motor Driver Using A3941

This tiny board designed to drive bidirectional DC brushed motor of large current. DC supply is up to 50V DC. A3941 gate driver IC and 4X N Channel Mosfet IRLR024 used as H-Bridge. The project can handle a load up to 10Amps. Screw terminals provided to connect load and load supply, 9 Pin header connector provided for easy interface with micro-controller. On board shunt resistor provides current feedback.

The A3941 is a full-bridge controller for use with external N-channel power MOSFETs and is specifically designed for automotive applications with high-power inductive loads, such as brush DC motors. A unique charge pump regulator provides full (>10 V) gate drive for battery voltages down to 7 V and allows the A3941 to operate with a reduced gate drive, down to 5.5 V. A bootstrap capacitor is used to provide the above-battery supply voltage required for N-channel MOSFETs. An internal charge pump for the high-side drive allows DC (100% duty cycle) operation.

50V – 10A Bidirectional DC Motor Driver Using A3941 – [Link]

10A 400V DC Intelligent Power Module (IPM)

10 Amp 400V DC Intelligent power module board has been designed using ON Semiconductors STK544UC62K. This Inverter IPM module includes the output stage of a 3-phase inverter, pre-drive circuits, bootstrap circuits, protection circuits, op-amp based current sense circuit, comparator circuit for fault/Over current output, Bus voltage output, onboard 5V DC regulator for op-amp circuit. This board can be used to drive AC Induction, BLDC, PMSM motors and Brushed DC Motors. The module integrates optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage or over voltage , over-current , and fault reporting. The built-in, high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module’s internal IGBTs. Separate negative IGBT terminals are connected to shunt resistor to provide the current feedback to the micro-controller. This IPM module helps to develop various power applications and also can be used as H-Bridge for brushed DC motor. The module mainly helps to drive Hall sensor based, encoder based motors and 3 Phase AC Motors. The IC has Built-in dead-time for shoot-thru protection. Internal substrate temperature is measured with an internal pulled up thermistor. PWM frequency is up to 20 KHz. The board can be used in application like small machines as speed controller, washing machine, refrigerator, Air condition, automation, AC motor speed controller, dc motor speed controller, brushless dc motor driver, ac servo driver.

10A 400V DC Intelligent Power Module (IPM) – [Link]

3 Phase AC Motor Controller

This project made using MC3PHAC from NXP Semiconductor. The project generates 6 PWM signals for 3 Phase AC Motor controller. It’s very easy to make professional VFD combining with Intelligent Power Module (IPM) or 3 Phase IGBT/MOSFET with Gate driver. The board provides 6 PWM signals for the IPM or IGBT Inverter and also brake signal. Also this board works in stand-alone mode and doesn’t require any software programming/coding.

The MC3PHAC is a high-performance monolithic intelligent motor controller designed specifically to meet the requirements for low-cost, variable-speed, 3-phase ac motor control systems. The device is adaptable and configurable, based on its environment. It contains all of the active functions required to implement the control portion of an open loop, 3-phase ac motor drive. One of the unique aspects of this board is that although it is adaptable and configurable based on its environment, it does not require any software development. This makes the MC3PHAC a perfect fit for customer applications requiring ac motor control but with limited or no software resources available.

Included in the MC3PHAC are protective features consisting of dc bus voltage monitoring and a system fault input that will immediately disable the PWM module upon detection of a system fault.

3 Phase AC Motor Controller – [Link]

2.5A 2Phase Micro-Stepping Stepper Motor Driver

2 Phase stepping motor driver is a tiny board based on STK682-010 hybrid IC from ON semiconductor and it can deliver current up to 2.5Amp and has supply up to 32V DC. It has multiple micro-stepping: Full step, 1/2th Step, 1/4th Step, 1/8th Step, 1/16th Step, 1/32th Step, 1/64th Step, 1/128th Step. PR1 trimmer potentiometer is provided to set the decay, 3.5V Slow Decay, 1.1V to 3.1V Mixed Decay, 0.8V-1V Fast Decay, and PR2 Trimmer Potentiometer provided to set the Current.

Features

  • Supply Voltage Range 9-32V DC
  • Motor Load 2.5A Continues
  • On Board LM317 Regulator For 5V DC Logic Supply
  • J1, J2, J3 Jumpers for Micro-Stepping
  • PR2 Current Adjust Trimmer Potentiometer
  • PR1 FDT Adjust Trimmer Potentiometer To Adjust Decay
  • Built In Automatic Half Current Maintenance energizing function
  • Built in Over Current Protection Circuit (Within IC)
  • Built Thermal Shutdown Circuit (Within IC)

2.5A 2Phase Micro-Stepping Stepper Motor Driver – [Link]

Pulse Generator For Stepper Controller Using AD654

This stepper pulse generator project is an easy solution for stepper controller drive. It’s a very important tool and can be used to drive stepper in standalone mode. It generates square wave pulses in frequency range 0-50Khz. This project has multiple features which are a must for stepper controller. It has on board frequency generator with wide span of frequency, Slide switch for direction control and jumper for enable or disables the stepper controller. AD654 is heart of the project and its generate the pulse for stepper controller, output frequency 0-50Khz, higher frequency output is possible by changing CT capacitor value connected between pin 6 and 7. Refer to data sheet of AD654 for alteration.

Pulse Generator For Stepper Controller Using AD654 – [Link]

Romeo BLE

Romeo BLE – An Arduino Based Powerful Robot Control Board With Bluetooth 4.0

Romeo BLE is an all-in-one Arduino based control board specially designed for robotics applications from DFRobot. This platform is open source and it’s powered by thousands of publicly available open-sourced codes. Romeo BLE can easily be expanded using Arduino shields. The most important feature—Bluetooth 4.0 wireless communication, allows the board to receive commands via Bluetooth. So, users can now use their smartphone, tablet, or computer to interact with the control board.

Control Robot From Smartphones by Bluetooth 4.0
Control Robot From Smartphones by Bluetooth 4.0

Even the codes can be uploaded over Bluetooth a USB Bluno Link adapter, without requiring any wired USB connection between the board and a PC. This is a great advantage for mobile applications where codes are debugged and uploaded frequently.

The Romeo BLE also includes two integrated two-channel DC motor drivers and wireless sockets, which makes project development more hassle-free. One can start the project immediately without needing an additional motor driver circuitry. The motor driving section also supports extra servos which need more current.

There are two ways to power the Romeo BLE board. But, the polarity must be correct. Otherwise, the board may get permanently damaged as there exists no reverse polarity protection. The two powering methods are:

  • Power from USB: Plug in the USB cable to the Romeo controller from a power source (i.e. wall jack or computer). If the input voltage and current are sufficient, the Romeo BLE board should turn on and a LED should light up. While powered from USB, do NOT connect anything else like motor, servo etc. except LED. Because the USB can only provide 500mA current which is certainly not enough for driving loads like motors.
  • Power from External Power Supply: Connect the ground wire from your supply to the screw terminal labeled “GND” on Romeo board, and then connect the positive wire from your supply to the screw terminal labeled “VIN”. The maximum acceptable input voltage is 23 volts. Do not exceed this value anyway.
Romeo BLE Board Pin Diagram
Romeo BLE Board Pin Diagram

Specifications:

  • Microcontroller: ATmega328P
  • Bootloader: Arduino UNO
  • Onboard BLE chip: TI CC2540
  • 14 Digital I/O ports
  • 6 PWM Outputs (Pin11, Pin10, Pin9, Pin6, Pin5, Pin3)
  • 8 10-bit analog input ports
  • 3 I2Cs
  • 5 Buttons
  • Power Supply Port: USB or DC2.1
  • External Power Supply Range: 5-23V
  • DC output: 5V/3.3V
  • Size: 94mm x 80mm

Features:

  • Auto sensing/switching external power input
  • Transmission range: 70m in free space
  • Support Bluetooth remote update the Arduino program
  • Support Bluetooth HID
  • Support iBeacons
  • Support AT command to config the BLE
  • Support Transparent communication through Serial
  • Support the master-slave machine switch
  • Support USB update BLE chip program
  • Support Male and Female Pin Header
  • Two-way H-bridge motor Driver with 2A maximum current
  • Integrated sockets for APC220 RF Module

You can program Romeo BLE using Arduino IDE version 1.8.1 or above. Select Arduino UNO from Tools –> Boards in the IDE. Go to arduino.en.cc to download the latest version of Arduino IDE. Read the Romeo BLE wiki to learn more.

16X2 LCD Shield with LMD18201 Motor Driver

 

LCD is very important part of many DIY and industrial projects. The 16X2 LCD shield has been designed to develop LCD related projects using 28-40 Pin Pic development board or DSpic development board, along with LCD this shield includes LMD18201 DC Motor driver , 2 Trimmer potentiometer and 4 tact switches with jumpers. Jumpers can be used to connect switches to pre decided port pins or remove jumpers and connect switches to any port pin using female to female wire harness, LCD pins and H-Bridge signal inputs are open ended male header connector and can be hooked to any port pin with the help of female to female wire harness. This is a very useful shield to develop timer, measurements, dc motor driver with display, DC motor pump controller, automatic irrigation system and many more projects.

16X2 LCD Shield with LMD18201 Motor Driver – [Link]

3.5A Unipolar Stepper Motor Driver

Compact Unipolar stepper motor driver can drive unipolar motor up to 3.5A and supply range 10 To 50V DC. This compact board is based on STK672-440BN IC from ON semiconductor. The STK672-440BN is a hybrid IC for use as a unipolar, 2-phase stepper motor driver with PWM current control with Micro-stepping.

Note: This Board can work with motor supply up to 36V DC, for 50V DC Supply Remove IC U2 LM317, and provide 5V Logic supply from external source. Default Enable pin is High for normal operations, pull down 0 to disable the operations, for internal Power on Reset R7 is 0E , C4 can be omit or its fine as it is.

3.5A Unipolar Stepper Motor Driver – [Link]

Sound to RC Servo Driver

This project is designed for Animatronics and Puppeteer applications, however it can be used in other applications like sound responsive toys, robots etc. Especially this project helps to move the jaw or mouth of animatronics creature.

The project moves RC servo once receives any kind of sound.  Rotation angle depends on sound level, more the sound level more the movement. Movement of the servo is proportional to sound level.

Circuit has 4 channel servo drivers, First channel is driven by sound, and rest 3 RC servos controlled by on board trimmer potentiometer, these 3 channels helps to drive other movement of animatronics figure.

Sound Received by microphone is convered to DC voltage, PIC16F72 microcontroller converts DC voltage into RC PWM signal. Circuits works with 6V DC , advisable to use battery for low jitter.

Sound to RC Servo Driver – [Link]

Temperature Controlled Fan With LED Status

This is a simple fan controller with single LED temperature status light using an ATtiny85 microcontroller and DS18B20 temperature sensor. The fan is turned on/off based on temperature sensed and the controller goes in sleep mode when the temperature drop below a predefined threshold.

Simple ATtiny85 fan controller to turn a fan on/off based on temperature. Includes an LED as a temperature indicator. LED is dim at start of fan on temperature and blinks when above a max temperature. Fan is not PWM controlled since I am using a small 5V fan which is quiet running at 100%. The controller is in sleep state while the temperature is below the minimum threshold and wakes up every ~8 seconds to recheck the temperature. When temperature is above minimum threshold, the controller will stay awake checking every second till the temperature falls below the minimum threshold. The code uses ds18b20 library by Davide Gironi.

Temperature Controlled Fan With LED Status – [Link]