Motor category

16X2 LCD Shield with LMD18201 Motor Driver

 

LCD is very important part of many DIY and industrial projects. The 16X2 LCD shield has been designed to develop LCD related projects using 28-40 Pin Pic development board or DSpic development board, along with LCD this shield includes LMD18201 DC Motor driver , 2 Trimmer potentiometer and 4 tact switches with jumpers. Jumpers can be used to connect switches to pre decided port pins or remove jumpers and connect switches to any port pin using female to female wire harness, LCD pins and H-Bridge signal inputs are open ended male header connector and can be hooked to any port pin with the help of female to female wire harness. This is a very useful shield to develop timer, measurements, dc motor driver with display, DC motor pump controller, automatic irrigation system and many more projects.

16X2 LCD Shield with LMD18201 Motor Driver – [Link]

3.5A Unipolar Stepper Motor Driver

Compact Unipolar stepper motor driver can drive unipolar motor up to 3.5A and supply range 10 To 50V DC. This compact board is based on STK672-440BN IC from ON semiconductor. The STK672-440BN is a hybrid IC for use as a unipolar, 2-phase stepper motor driver with PWM current control with Micro-stepping.

Note: This Board can work with motor supply up to 36V DC, for 50V DC Supply Remove IC U2 LM317, and provide 5V Logic supply from external source. Default Enable pin is High for normal operations, pull down 0 to disable the operations, for internal Power on Reset R7 is 0E , C4 can be omit or its fine as it is.

3.5A Unipolar Stepper Motor Driver – [Link]

Sound to RC Servo Driver

This project is designed for Animatronics and Puppeteer applications, however it can be used in other applications like sound responsive toys, robots etc. Especially this project helps to move the jaw or mouth of animatronics creature.

The project moves RC servo once receives any kind of sound.  Rotation angle depends on sound level, more the sound level more the movement. Movement of the servo is proportional to sound level.

Circuit has 4 channel servo drivers, First channel is driven by sound, and rest 3 RC servos controlled by on board trimmer potentiometer, these 3 channels helps to drive other movement of animatronics figure.

Sound Received by microphone is convered to DC voltage, PIC16F72 microcontroller converts DC voltage into RC PWM signal. Circuits works with 6V DC , advisable to use battery for low jitter.

Sound to RC Servo Driver – [Link]

Temperature Controlled Fan With LED Status

This is a simple fan controller with single LED temperature status light using an ATtiny85 microcontroller and DS18B20 temperature sensor. The fan is turned on/off based on temperature sensed and the controller goes in sleep mode when the temperature drop below a predefined threshold.

Simple ATtiny85 fan controller to turn a fan on/off based on temperature. Includes an LED as a temperature indicator. LED is dim at start of fan on temperature and blinks when above a max temperature. Fan is not PWM controlled since I am using a small 5V fan which is quiet running at 100%. The controller is in sleep state while the temperature is below the minimum threshold and wakes up every ~8 seconds to recheck the temperature. When temperature is above minimum threshold, the controller will stay awake checking every second till the temperature falls below the minimum threshold. The code uses ds18b20 library by Davide Gironi.

Temperature Controlled Fan With LED Status – [Link]

A DC Motor Controller with Control Leds

Boris Landoni writes about a new open source project a DC motor controller with control LEDs:

The circuit board we are presenting this time is based on the dual-bridge driver L298N, in a traditionally mounted version in a Multiwatt container with 15 staggered pins; it has two terminal blocks for attaching to DC motors or the coils of a bipolar stepper motor and a terminal block for powering logics and motors. Each of the two output channels of the circuit can provide a maximum current of 2 A, which is enough to drive two 2 A direct current motors or a bipolar stepper motor absorbing 2 A per phase.

A DC Motor Controller with Control Leds – [Link]

400V – 5A Power Supply For Brushless Motor Drivers

Although the power supply design is specific to the Brushless Servo Drivers mainly for IPM Modules, the concepts and circuit design may be used for any power supply requires high voltage output up to 400V DC and 5 Amps. The power supply is an unregulated design with an option to allow connection to either 120V or 230V mains and also it can work with lower voltage for audio amplifiers by increasing capacitor value. The design uses fully integrated bridge rectifier, and multiple bus capacitors for low ripple, noise suppression, and provides high current reservoirs. Additionally the dc supply line have bleeder resistor R2 and R3 to drain the large reservoir capacitors PCB, mounted fuse holder provided  for short circuit and over current protections, low ohm NTC used for inrush current at power start up,  C1, C12, TX protects  against turn on/off spikes and EMI noise reduction. This power supply can be used to drive Tesla Coils, Induction heaters, DC Motor drivers, Brushless DC motor driver.

400V – 5A Power Supply For Brushless Motor Drivers – [Link]

Scout ESC, A New Tank Controller Board By Open Panzer

Open Panzer Project is an attempt to create open source versions of all electronics used in RC tanks today, with professional quality and features. The goal of this project is to expand the hoppy and to improve everyone’s experience of RC tanking corner, which will speed-up its growing.

Open Panzer recently developed the Scout ESC board, a dual brushed-motor speed controller that accepts both standard RC inputs or logic-level serial commands. It features an ATmega328 that can be programmed with the Arduino IDE through standard FTDI cable.

The Scout ESC operates at ultrasonic frequencies, at voltages up to 16 volts, and is rated at 10 amps continuous per channel, but the addition of a fan can increase the current capacity. The Scout has its own onboard fan controller that can drive any standard 12 volt 2-pin PC case fan. An onboard thermistor also allows the processor to monitor the board temperature.

The Scout is 65mm x 47mm board that is perfect for controlling even the heaviest 1/16th scale RC tanks. It is compatible with the Open Panzer Tank Control Board, so no additional setup is required.

Scout ESC specification:

  • Input voltage: 6 – 16 volts
  • Operating current:
    • 10 amps per channel continuous without fan
    • 20 amps peak
  • Motor PWM: 21 kHz
  • RC Inputs: Standard 1000-2000 uS pulse width (1500 uS = motor stopped)
  • Serial Input: 38400 baud; 8 data bits, no parity, one stop bit; TTL level (5v max)
  • Dimensions (L x W): 2.6″ x 1.9″ / 65mm x 47mm
  • Mounting holes: 1.57″ / 40mm (use 4-40 or 3mm screws)

As it is an open source project, you can get Scout board files, schematics, and bill of materials from the website, and the firmware and libraries from the github repository. The Open Panzer wiki has more information about the project, and the Open Panzer Community is open for everyone for discussion.

Micro Maestro 6-Channel USB Servo Controller

The Micro Maestro is the first of Pololu’s second-generation USB servo controllers. The board supports three control methods — USB for direct connection to a PC, TTL serial for use with embedded systems, and internal scripting for self-contained, host controller-free applications — and channels that can be configured as servo outputs for use with radio control (RC) servos or electronic speed controls (ESCs), digital outputs, or analog inputs. The Micro Maestro is a highly versatile six-channel servo controller and general I/O board in a highly compact (0.85 x 1.20″) package.

The extremely accurate, high-resolution servo pulses have a jitter of less than 200 ns, making this servo controller well suited for high-precision animatronics, and built-in speed and acceleration control make it easy to achieve smooth, seamless movements without requiring the control source to constantly compute and stream intermediate position updates to the Micro Maestro.

Check this intro video by Pololu to see Micro Maestro in action:

Key Features

  • Three control methods: USB, TTL (5V) serial, and internal scripting
  • 0.25μs output pulse width resolution (corresponds to approximately 0.025° for a typical servo, which is beyond what the servo could resolve)
  • Pulse rate configurable from 33 to 100 Hz
  • Wide pulse range of 64 to 3280 μs when using all six servos with a pulse rate of 50 Hz
  • Individual speed and acceleration control for each channel
  • Channels can also be used as general-purpose digital outputs or analog inputs
  • A simple scripting language lets you program the controller to perform complex actions even after its USB and serial connections are removed
  • Free configuration and control application for Windows makes it easy to:
    • Configure and test your controller
    • Create, run, and save sequences of servo movements for animatronics and walking robots
    • Write, step through, and run scripts stored in the servo controller
  • Virtual COM port makes it easy to create custom applications to send serial commands via USB to the controller
  • TTL serial features:
    • Supports 300 – 250000 kbps in fixed-baud mode
    • Supports 300 – 115200 kbps in autodetect-baud mode
    • Simultaneously supports the Pololu protocol, which gives access to advanced functionality, and the simpler Scott Edwards MiniSSC II protocol (there is no need to configure the device for a particular protocol mode)
    • Can be daisy-chained with other Pololu servo and motor controllers using a single serial transmit line
  • Board can be powered off of USB or a 5 – 16 V battery, and it makes the regulated 5V available to the user
  • Compact size of 0.85″ × 1.20″ (2.16 × 3.05 cm) and light weight of 0.17 oz (4.8 g)
  • Upgradable firmware

The Micro Maestro is the smallest of Pololu’s second-generation USB servo controllers. The Maestros are available in four sizes and can be purchased fully assembled or as partial kits. you can check other products here.

You can get your Micro Maestro for around $20 from the product’s page, and you can also learn more about this product by checking the User’s Guide.

Source: Sparkfun

AC Motor Speed Controller for Modern Appliances Using LS7311

The project specifically designed for motor speed control application in appliances such as blenders, etc. Tact switches provided for selecting/indicating from 1 to 10 power levels ( Speed Levels).  The project is ideal for universal and shaded-pole motor speed control for modern appliances design. Eliminates awkward mechanical switch assemblies and multi-taped motor winding.

Features

  • 10 Tact Switch for Speed Selection
  • 10 LEDS for speed indication
  • On Board Stop and Start Switches ( Start Switch Latch Operation)
  • Momentary Run Switch
  • Supply 230V ( 110V Possible Refer Data sheet for components Change)
  • 300W Load
  • On Board snubber for Inductive Load
  • No Separate DC power supply required

AC Motor Speed Controller for Modern Appliances Using LS7311 – [Link]

Control Nema Stepper Motor With Arduino

@ instructables.com have an article describing stepper motors and how to drive them using Arduino. They write:

Lots of People want to build Them own small Cnc machine . they started with drives stepper motor but they stacked in controller Programming . In this instructable Robokits will provide a resource to control your Stepper motor with Arduino. Before Programming we have to learn some basics Related to Stepper motor .

Control Nema Stepper Motor With Arduino – [Link]