Motor category

PIC Arduino for Motor Control Projects

This board created for makers, who want to use various Arduino UNO shields with PIC micro-controllers from Microchip. Board facilitates the use of any 28 PIN DIP PIC microcontroller with or without crystal. Omit Y1 , C9 and C10 in case of internal oscillator . Project can also be used to develop RS485 applications with the help of on board SN75176 IC. Two regulators provide 3.3V and 5V DC outputs. ICSP connector provided to program the PIC IC using PICKIT2/PICKIT3 programmer. On board DC jack connector and additional CN2 Header connector helps to power up the board. Input supply 7V-15V DC. This board has been tested using PIC16F886 IC. The board also supports PIC18F2331 and PIC18F2431 PICs mainly used for motor applications. Solder R9 and C8 if Motor PICs are used or left open for normal microcontrollers. Switch 1 helps to reset the board. Refer to PCB top layout for Arduino to Microchip Pin configuration.

PIC Arduino for Motor Control Projects – [Link]


Fan Speed Control Is Cool!

App note from Maxim Integrated about their MAX6650 and MAX6651 fan controllers chip.

Temperature-based fan control is a necessity in a growing number of systems, both to reduce system noise and to improve fan reliability. When fan control is augmented by fan-speed monitoring, a speed-control loop can be implemented that is independent of manufacturing variances and wear on the fan. In addition, a fan that is about to fail can be identified so that it can be replaced before it fails.

Fan Speed Control Is Cool! – [Link]

IQ Motor Module – An Integrated Motor With A Closed Loop Controller And Position Sensor

The drone industry is booming, and the technology is just… cool, to put it plainly. Flying robots, many of which are completely autonomous delivering our goods and also spying on us. Makers and hobbyist are getting on the bandwagon, making their customized drones with available parts. With the boom of UAV (Unmanned Autonomous Vehicle) and Drone technology also comes the growth of issues.

IQ Motion Module

Electric motors are one of the most fundamental parts of electric based flying objects like drones. Drones usually use brushless DC paired with an ESC (electronic speed control) unit for speed regulation and a possible flight controller for position handling. Building your own drone either for the fun of it or a special purpose means you have to go through the hurdle of selecting the Motors, ESC, controller etc. You also have to choose which strength to prioritize and not to mention of potential compatibility or over/under powering issues. But with IQ Motor Module, you don’t have to worry about all those. The drone industry has relied on hobby-grade motors and controllers for too long. Now, IQ is bringing advanced motor control to the drone industry and other robotics fields at an affordable price.

The IQ Motor Module from IQ Motion Control is an integrated motor and controller with an embedded position sensor that is designed to change some of the challenges faced with drone, flying object set up by combining all of those capabilities (motor, electronic speed control, controller, position sensing) into a single versatile unit. The module is made up of three major components: a brushless DC motor, a motor controller, and a position sensor. With position-sensing and advanced calibration and control algorithms, IQ can optimize motor performance and give users unprecedented control over their vehicles and machines.

The IQ module provides serial communication interface as well as standard hobby protocols making it widely compatible with the possible vehicle and drone design. It also comes with some features built in like, a 40 ms response time, over-current protection, active freewheeling, anti-cogging, mo delay with zero crossing, jitter-free startup, regenerative and active braking, and many others. The velocity and position control is based on a tunable PID + Feed Forward control.

The controller is built on a 32-bit 64 MHz Arm Cortex MCU and has two firmware options, a high-speed module, and a precision module both in a 2306 size. The high-speed module provides a constant rpm of 2200 KV, and the precision module a constant rpm of 220 KV. Both motor will have an estimated peak current of 30 A and estimated peak voltage of 25.2 V. The speed firmware is specially designed to drive propellers or any application with a target velocities. A position firmware for precision is useful for 3D printers, robots, and machine tools. The firmware can be reflashed at any time by the user, so you can always reuse your IQ Motor Modules. It comes with a power and efficiency boost; Sinusoidal commutation to give a 20% increase in battery life and Trapezoidal commutation to provide about 4.8% more shaft power.

The IQ Motor Module is suitable for a wide variety of applications including consumer and enterprise drones, as well as many other robotic projects. The new IQ Motor Module will offer “unparalleled performance.” You can back the Crowd Supply campaign until May 10th, and a single IQ Motor Module will cost you $80, or $305 for a pack of four. Orders will be shipped in September 2018.

Mini Infra-Red Remote Robot Controller Shield For Arduino Nano

The Mini Infra-Red Remote Robot Controller shield for Arduino Nano is designed to drive mini mobile robots. Low voltage DC Motor controller interface allows Infrared wireless control of two DC motors, two PWM and 2 Direction signal outputs to drive two motors separately. TB6612 IC is the heart of the project. IC can handle constant current up to 1.2A, Supply 6-12V DC. One LDR connected to Analog pin A7 for application like light sensitive robot controller. Infrared receiver TSOP1738 used as IR receiver which is connected to Digital pin D2 of Arduino Nano. Nano D7-Direction Motor A, D4 Direction Motor B, D5 Motor A PWM signal, D6 Motor B PWM signal.

Mini Infra-Red Remote Robot Controller Shield For Arduino Nano – [Link]

MC33035 Brushless motor driver breakout board

The board shown here is a breakout board for MC33035 brushless motor controller. It requires an output buffer IPM module or Mosfets to complete the closed loop brushless motor driver. MC33035 IC is the heart of the project; the project provides 6 PWM pulses as well 6 Inverse pulses outputs. On board Jumpers helps to change the Direction, Enable, Brake, and 60/120 phasing Header connector provided to connect the Hall sensors and supply, on board LED for Power and fault, P1 potentiometer helps to change the speed.

The MC33035 is a high performance second generation monolithic brushless DC motor controller containing all of the active functions required to implement a full featured open loop, three or four phase motor control system. This device consists of a rotor position decoder for proper commutation sequencing, temperature compensated reference capable of supplying sensor power, frequency programmable saw tooth oscillator, three open collector top drivers, and three high current totem pole bottom drivers ideally suited for driving power MOSFETs. Also included are protective features consisting of under voltage lockout, cycle−by−cycle current limiting with a selectable time delayed latched shutdown mode, internal thermal shutdown, and a unique fault output that can be interfaced into microprocessor controlled systems. Typical motor control functions include open loop speed, forward or reverse direction, run enable, and dynamic braking. The MC33035 is designed to operate with electrical sensor phasings of 60°/300° or 120°/240°, and can also efficiently control brush DC motors.

MC33035 Brushless motor driver breakout board – [Link]

PCB Motor – A smaller and cheaper brushless motor.

by Carl Bugeja @ designed a brushless motor using a 3D printer and a 4-layer PCB. He writes:

The PCB motor is my solution for trying to design a smaller, cheaper and easier to assemble brushless motor.

The motor’s stator is a 6 spiral PCB coil in a star configuration. Although it has less torque compared to an iron core stator, it still suitable for high-speed applications.

The current prototype has a 3d printed rotor with a 16mm diameter.

PCB Motor – A smaller and cheaper brushless motor – [Link]

3.5A Unipolar Stepper Motor Driver

Unipolar stepper motor driver can drive unipolar stepper motor up to 3.5A and supply range is 10 To 50V DC. The board has been designed using STK672-442AEN IC.  The STK672-442AN is a hybrid IC for use as a unipolar, 2-phase stepper motor driver with PWM current control and Micro-stepping.


  • Supply Up to 50V DC Input
  • Logic Supply 5V DC Input
  • Load Current 3.5Amps
  • Stepper Motor: 5 Wires, 6 Wires, 8 Wires (Unipolar)
  • Built-in over current detection function, over heat detection function (Output Off)
  • Fault 1 signal ( Active Low) is output when overcurrent or over heat is detected
  • Fault 2 signal is used to output the result of activation of protection circuit detection at 2 levels.
  • Built-in power on reset function

3.5A Unipolar Stepper Motor Driver – [Link]

50V – 10A Bidirectional DC Motor Driver Using A3941

This tiny board designed to drive bidirectional DC brushed motor of large current. DC supply is up to 50V DC. A3941 gate driver IC and 4X N Channel Mosfet IRLR024 used as H-Bridge. The project can handle a load up to 10Amps. Screw terminals provided to connect load and load supply, 9 Pin header connector provided for easy interface with micro-controller. On board shunt resistor provides current feedback.

The A3941 is a full-bridge controller for use with external N-channel power MOSFETs and is specifically designed for automotive applications with high-power inductive loads, such as brush DC motors. A unique charge pump regulator provides full (>10 V) gate drive for battery voltages down to 7 V and allows the A3941 to operate with a reduced gate drive, down to 5.5 V. A bootstrap capacitor is used to provide the above-battery supply voltage required for N-channel MOSFETs. An internal charge pump for the high-side drive allows DC (100% duty cycle) operation.

50V – 10A Bidirectional DC Motor Driver Using A3941 – [Link]

10A 400V DC Intelligent Power Module (IPM)

10 Amp 400V DC Intelligent power module board has been designed using ON Semiconductors STK544UC62K. This Inverter IPM module includes the output stage of a 3-phase inverter, pre-drive circuits, bootstrap circuits, protection circuits, op-amp based current sense circuit, comparator circuit for fault/Over current output, Bus voltage output, onboard 5V DC regulator for op-amp circuit. This board can be used to drive AC Induction, BLDC, PMSM motors and Brushed DC Motors. The module integrates optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage or over voltage , over-current , and fault reporting. The built-in, high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module’s internal IGBTs. Separate negative IGBT terminals are connected to shunt resistor to provide the current feedback to the micro-controller. This IPM module helps to develop various power applications and also can be used as H-Bridge for brushed DC motor. The module mainly helps to drive Hall sensor based, encoder based motors and 3 Phase AC Motors. The IC has Built-in dead-time for shoot-thru protection. Internal substrate temperature is measured with an internal pulled up thermistor. PWM frequency is up to 20 KHz. The board can be used in application like small machines as speed controller, washing machine, refrigerator, Air condition, automation, AC motor speed controller, dc motor speed controller, brushless dc motor driver, ac servo driver.

10A 400V DC Intelligent Power Module (IPM) – [Link]

3 Phase AC Motor Controller

This project made using MC3PHAC from NXP Semiconductor. The project generates 6 PWM signals for 3 Phase AC Motor controller. It’s very easy to make professional VFD combining with Intelligent Power Module (IPM) or 3 Phase IGBT/MOSFET with Gate driver. The board provides 6 PWM signals for the IPM or IGBT Inverter and also brake signal. Also this board works in stand-alone mode and doesn’t require any software programming/coding.

The MC3PHAC is a high-performance monolithic intelligent motor controller designed specifically to meet the requirements for low-cost, variable-speed, 3-phase ac motor control systems. The device is adaptable and configurable, based on its environment. It contains all of the active functions required to implement the control portion of an open loop, 3-phase ac motor drive. One of the unique aspects of this board is that although it is adaptable and configurable based on its environment, it does not require any software development. This makes the MC3PHAC a perfect fit for customer applications requiring ac motor control but with limited or no software resources available.

Included in the MC3PHAC are protective features consisting of dc bus voltage monitoring and a system fault input that will immediately disable the PWM module upon detection of a system fault.

3 Phase AC Motor Controller – [Link]